• Login
    View Item 
    •   SU+ Home
    • Research and Publications
    • Strathmore Institute of Mathematical Sciences (SIMs)
    • SIMs Publications
    • SIMs Scholarly Articles
    • View Item
    •   SU+ Home
    • Research and Publications
    • Strathmore Institute of Mathematical Sciences (SIMs)
    • SIMs Publications
    • SIMs Scholarly Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Maximal rank for ΩPn

    Thumbnail
    View/Open
    Abstract Let k an algebraically closed field and R the homogeneous coordinate ring of Pn and ΩPn the cotangent bundle of Pn. In this paper I prove that for a given set S of s general points in Pn then the evaluation map H0Pn,ΩPn(l) −→ s i=1 ΩPn(l)|Pi is of maximal rank. Implying that a0 = 0 or b0 = 0 so that a0b0 = 0 as conjectured by Anna Lorenzini [4, 5] see below · · · −−−→ R(−d − 2)b1 R(−d − 1)a0 −−−→ R(−d − 1)b0 R(−d)(d+n n )−s −−−→ IS −→ 0 (118.5Kb)
    Author
    Maingi, Damian
    Dieudonne, Laboratoir´e J. A.
    Metadata
    Show full item record
    URI
    http://hdl.handle.net/11071/3521
    Collections
    • SIMs Scholarly Articles [20]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of SU+Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV