A Fraud investigative and detective framework in the motor insurance industry: a Kenyan perspective

dc.creatorKisaka, George Ngosiah
dc.creatorOnyango-Otieno., Vitalis
dc.date01/09/2013
dc.dateWed, 9 Jan 2013
dc.dateWed, 9 Jan 2013 10:01:17
dc.dateMon, 28 Jan 2013 14:05:41
dc.date.accessioned2015-03-18T11:28:46Z
dc.date.available2015-03-18T11:28:46Z
dc.descriptionA thesis submitted to Strathmore University in partial fulfillment to the requirements of the award of Master of Science in Information Technology (MSIT). Full text thesis
dc.descriptionInsurance fraud is a serious and growing problem, with fraudsters’ always perfecting their schemes to avoid detection by the basic approaches. This has caused a rise in fraudulent claims that get paid and increased loss ratios for insurance firms thereby diminishing profitability and threatening their very existence. There is widespread recognition that traditional approaches to tackling fraud are inadequate. Studies of insurance fraud have typically focused upon identifying characteristics of fraudulent claims and putting in place different measures to capture them. This thesis proposes an integrated framework to curtail insurance fraud in the Kenyan insurance industry. The research studied existing fraud detection and investigation expertise in depth. The research methodology identified two available theoretical frameworks, the Bayesian Inference Approach and the Mass Detection Tool (MDT). These were compared to comprehensive motor insurance claims fraud management with respect to the insurance industry in Kenya. The findings show that insurance claims’ fraud is indeed prevalent in the Kenyan industry. Sixty five percent of claims processing professionals deem the motor segment as one of the most fraud prone yet a paltry 15 percent of them use technology for fraud detection. This is despite the fact that significant strides have been made in developing systems for fraud detection. These findings were used to determine and propose an integrated ensemble motor insurance fraud detection framework for the Kenyan insurance industry. The proposed framework built up on the mass detection tool (MDT) and provides a solution for preventing, detecting and managing claims fraud in the motor insurance line of business within the Kenyan insurance industry.
dc.description.abstractInsurance fraud is a serious and growing problem, with fraudsters’ always perfecting their schemes to avoid detection by the basic approaches. This has caused a rise in fraudulent claims that get paid and increased loss ratios for insurance firms thereby diminishing profitability and threatening their very existence. There is widespread recognition that traditional approaches to tackling fraud are inadequate. Studies of insurance fraud have typically focused upon identifying characteristics of fraudulent claims and putting in place different measures to capture them. This thesis proposes an integrated framework to curtail insurance fraud in the Kenyan insurance industry. The research studied existing fraud detection and investigation expertise in depth. The research methodology identified two available theoretical frameworks, the Bayesian Inference Approach and the Mass Detection Tool (MDT). These were compared to comprehensive motor insurance claims fraud management with respect to the insurance industry in Kenya. The findings show that insurance claims’ fraud is indeed prevalent in the Kenyan industry. Sixty five percent of claims processing professionals deem the motor segment as one of the most fraud prone yet a paltry 15 percent of them use technology for fraud detection. This is despite the fact that significant strides have been made in developing systems for fraud detection. These findings were used to determine and propose an integrated ensemble motor insurance fraud detection framework for the Kenyan insurance industry. The proposed framework built up on the mass detection tool (MDT) and provides a solution for preventing, detecting and managing claims fraud in the motor insurance line of business within the Kenyan insurance industry.
dc.formatNumber of Pages:xii, 66p.
dc.identifier.urihttp://hdl.handle.net/11071/3396
dc.languageeng
dc.rightsBy agreeing with and accepting this license, I (the author(s), copyright owner or nominated agent) agree to the conditions, as stated below, for deposit of the item (referred to as .the Work.) in the digital repository maintained by Strathmore University, or any other repository authorized for use by Strathmore University. Non-exclusive Rights Rights granted to the digital repository through this agreement are entirely non-exclusive. I understand that depositing the Work in the repository does not affect my rights to publish the Work elsewhere, either in present or future versions. I agree that Strathmore University may electronically store, copy or translate the Work to any approved medium or format for the purpose of future preservation and accessibility. Strathmore University is not under any obligation to reproduce or display the Work in the same formats or resolutions in which it was originally deposited. SU Digital Repository I understand that work deposited in the digital repository will be accessible to a wide variety of people and institutions, including automated agents and search engines via the World Wide Web. I understand that once the Work is deposited, metadata may be incorporated into public access catalogues. I agree as follows: 1.That I am the author or have the authority of the author/s to make this agreement and do hereby give Strathmore University the right to make the Work available in the way described above. 2.That I have exercised reasonable care to ensure that the Work is original, and to the best of my knowledge, does not breach any laws including those relating to defamation, libel and copyright. 3.That I have, in instances where the intellectual property of other authors or copyright holders is included in the Work, gained explicit permission for the inclusion of that material in the Work, and in the electronic form of the Work as accessed through the open access digital repository, or that I have identified that material for which adequate permission has not been obtained and which will be inaccessible via the digital repository. 4.That Strathmore University does not hold any obligation to take legal action on behalf of the Depositor, or other rights holders, in the event of a breach of intellectual property rights, or any other right, in the material deposited. 5.That if, as a result of my having knowingly or recklessly given a false statement at points 1, 2 or 3 above, the University suffers loss, I will make good that loss and indemnify Strathmore University for all action, suits, proceedings, claims, demands and costs occasioned by the University in consequence of my false statement.
dc.subjectAutomobile insurance--Kenya
dc.subjectTraffic accidents--Kenya
dc.subjectInsurance fraud--Kenya
dc.titleA Fraud investigative and detective framework in the motor insurance industry: a Kenyan perspective
dc.typeThesis
Files