Context-Aware Voip congestion control service

dc.creatorAgutu, Gordon
dc.creatorDjouani, Karim
dc.creatorBiermann, Elmarie
dc.creatorNoel, Guillaume
dc.date07/04/2013
dc.dateThu, 4 Jul 2013
dc.dateThu, 4 Jul 2013 16:40:10
dc.dateYear: 2011
dc.dateThu, 4 Jul 2013 16:40:10
dc.date.accessioned2015-03-18T11:29:02Z
dc.date.available2015-03-18T11:29:02Z
dc.descriptionPublished in The African Journal of Information and Communication, Issue no 11 2010/2011
dc.descriptionIP networks can have difficulty coping with delay-sensitive VoIP traffics during emergency situations caused by fires and related disasters. During emergencies there is a huge increase in voice and video traffic, causing a huge strain on the network. The strain on the network is as a result of both essential and non-essential traffic. In such crisis situations, calls originating from or destined for rescue personnel, such as doctors and police, are considered essential. Any other calls from eyewitnesses and the public are considered non-essential, since they degrade the quality of service for the emergency response teams by consuming the scarce network resources. Providing the rescue team with the quality of service that they require necessitates network access restriction for non-essential traffic. In this paper, the authors present a voice and video service that uses Context-Awareness and Semantic Web technologies to restrict network access to privileged users during crisis situations. The service monitors the network for crisis conditions, enables the network to respond appropriately when a crisis occurs, detects the end of the crisis and reverts to its default state.
dc.description.abstractIP networks can have difficulty coping with delay-sensitive VoIP traffics during emergency situations caused by fires and related disasters. During emergencies there is a huge increase in voice and video traffic, causing a huge strain on the network. The strain on the network is as a result of both essential and non-essential traffic. In such crisis situations, calls originating from or destined for rescue personnel, such as doctors and police, are considered essential. Any other calls from eyewitnesses and the public are considered non-essential, since they degrade the quality of service for the emergency response teams by consuming the scarce network resources. Providing the rescue team with the quality of service that they require necessitates network access restriction for non-essential traffic. In this paper, the authors present a voice and video service that uses Context-Awareness and Semantic Web technologies to restrict network access to privileged users during crisis situations. The service monitors the network for crisis conditions, enables the network to respond appropriately when a crisis occurs, detects the end of the crisis and reverts to its default state.
dc.formatIssue No.:11
dc.identifier
dc.identifier.urihttp://hdl.handle.net/11071/3631
dc.languageeng
dc.publisherThe African Journal of Information and Communication
dc.rightsBy agreeing with and accepting this license, I (the author(s), copyright owner or nominated agent) agree to the conditions, as stated below, for deposit of the item (referred to as .the Work.) in the digital repository maintained by Strathmore University, or any other repository authorized for use by Strathmore University. Non-exclusive Rights Rights granted to the digital repository through this agreement are entirely non-exclusive. I understand that depositing the Work in the repository does not affect my rights to publish the Work elsewhere, either in present or future versions. I agree that Strathmore University may electronically store, copy or translate the Work to any approved medium or format for the purpose of future preservation and accessibility. Strathmore University is not under any obligation to reproduce or display the Work in the same formats or resolutions in which it was originally deposited. SU Digital Repository I understand that work deposited in the digital repository will be accessible to a wide variety of people and institutions, including automated agents and search engines via the World Wide Web. I understand that once the Work is deposited, metadata may be incorporated into public access catalogues. I agree as follows: 1.That I am the author or have the authority of the author/s to make this agreement and do hereby give Strathmore University the right to make the Work available in the way described above. 2.That I have exercised reasonable care to ensure that the Work is original, and to the best of my knowledge, does not breach any laws including those relating to defamation, libel and copyright. 3.That I have, in instances where the intellectual property of other authors or copyright holders is included in the Work, gained explicit permission for the inclusion of that material in the Work, and in the electronic form of the Work as accessed through the open access digital repository, or that I have identified that material for which adequate permission has not been obtained and which will be inaccessible via the digital repository. 4.That Strathmore University does not hold any obligation to take legal action on behalf of the Depositor, or other rights holders, in the event of a breach of intellectual property rights, or any other right, in the material deposited. 5.That if, as a result of my having knowingly or recklessly given a false statement at points 1, 2 or 3 above, the University suffers loss, I will make good that loss and indemnify Strathmore University for all action, suits, proceedings, claims, demands and costs occasioned by the University in consequence of my false statement.
dc.subjectCall admission control
dc.subjectcontext-awareness
dc.subjectontology
dc.subjectsemantic web
dc.subjectweb ontology language
dc.titleContext-Aware Voip congestion control service
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Context-Aware Voip congestion control service.pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
Description:
Article