• Login
    View Item 
    •   SU+ Home
    • Research and Publications
    • Faculty of Information Technology (FIT)
    • FIT Projects, Theses and Dissertations
    • MSIT Theses and Dissertations
    • MSIT Theses and Dissertations (2019)
    • View Item
    •   SU+ Home
    • Research and Publications
    • Faculty of Information Technology (FIT)
    • FIT Projects, Theses and Dissertations
    • MSIT Theses and Dissertations
    • MSIT Theses and Dissertations (2019)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Smart fertilizer recommendation through NPK analysis using Artificial Neural Networks

    Thumbnail
    View/Open
    Fulltext thesis (1.731Mb)
    Date
    2019
    Author
    Siva, Faith
    Metadata
    Show full item record
    Abstract
    Agricultural practices, tools and technologies have taken a new paradigm. Precision agriculture is essential to ensure that site-specific crop management is implemented, which includes soil nutrient remedies per crop requirement. Though fertilization is key in boosting productivity, there is need for analysis of the potentials and limitations of soil as a basis of recommending the correct type, quantities and application time of fertilizers to counter uncertainty in fertilizer use. The complexity of finding the optimal fertilization range greatly contributes to major inefficiencies like productivity losses, resource wastage and increased environmental pollution caused by farmers’ use of intuition, trial and error, guesswork and estimation. With these, farmers cannot accurately predict what impact their decisions will have on the resulting crop yields and the environment. Some solutions implemented for soil fertility management such as use of mobile laboratories or imported equipment have had their share of challenges such cost of implementation, ease of use and adaptation to the local environment. Other available solutions including taking soil to laboratories for testing is tedious, time consuming and inconsistent. This study proposed development of an ANN model that predicts NPK nutrient levels and recommends the best fertilizer remedy and application time based on the weather forecast. This involved use of IoT, machine learning techniques and a weather API through RAD methodology and experimental research design. Historical data of temperature, PH and NPK from KALRO Library was used to train and validate the model. The developed model achieved an RMSE 0.5 with 75% of data used for training and 25% used for testing. This is in effort to encourage precise fertilizer production for particular areas of need.
    URI
    http://hdl.handle.net/11071/6702
    Collections
    • MSIT Theses and Dissertations (2019) [24]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of SU+Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV