• Login
    View Item 
    •   SU+ Home
    • Research and Publications
    • Faculty of Information Technology (FIT)
    • FIT Projects, Theses and Dissertations
    • MSIT Theses and Dissertations
    • MSIT Theses and Dissertations (2018)
    • View Item
    •   SU+ Home
    • Research and Publications
    • Faculty of Information Technology (FIT)
    • FIT Projects, Theses and Dissertations
    • MSIT Theses and Dissertations
    • MSIT Theses and Dissertations (2018)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fall army-worm prediction model on the maize crop in Kenya: an internet of things based approach

    Thumbnail
    View/Open
    Full-text Thesis 2018 (12.03Mb)
    Date
    2018
    Author
    Ateya, Shantal Musungu
    Metadata
    Show full item record
    Abstract
    In March 2017, the agricultural sector in Kenya experienced a FAW pest infestation that resulted in the loss of agricultural yields amounting to millions of shillings. The fall armyworm pest caught farmers and agricultural organizations by surprise when it hit most major maize farming regions in Kenya. Currently, both large-scale and small-scale farmers rely on manual observation of the maize crop for detection of the FAW. This comes weeks after the pest has fully matured and began causing damage to crops. The late detection of the FAW in turn results to delays in administering effective pest control measures which forces farmers to incur high costs in administering appropriate control measures. With the ineffectiveness of late manual observations, there is need for an early technology-based solution that will allow farmers to prepare in advance for possible FAW infestations This study proposes the development of a prediction model of a FAW invasion using Internet of Things and machine learning techniques. We suggest the development of a model that automatically predicts a possible invasion by the FAW based on several factors. The key parameters used in the study will be soil temperature and humidity collected through sensors placed in the maize fields. These factors favour the development of the pupa stage of the FAW which later matures into moths that fly to different fields. Based on the parameters, the model will be able to detect the presence of FAW pupa in the soil and issue early warnings to farmers thus allowing for preparation and appropriate counter measures. The study will provide performance evaluation of the model based on the accuracy of the classification, the precision and recall ratio of the collected parameters. The developed model achieved an accuracy of 82.06%.
    URI
    http://hdl.handle.net/11071/5995
    Collections
    • MSIT Theses and Dissertations (2018) [15]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of SU+Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV