• Login
    View Item 
    •   SU+ Home
    • Research and Publications
    • Faculty of Information Technology (FIT)
    • FIT Projects, Theses and Dissertations
    • MSIT Theses and Dissertations
    • MSIT Theses and Dissertations (2017)
    • View Item
    •   SU+ Home
    • Research and Publications
    • Faculty of Information Technology (FIT)
    • FIT Projects, Theses and Dissertations
    • MSIT Theses and Dissertations
    • MSIT Theses and Dissertations (2017)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Model for early detection of potato late blight disease: a case Study in Nakuru County

    Thumbnail
    View/Open
    Fulltext thesis (2.115Mb)
    Date
    2017
    Author
    Toroitich, Patrick Kiplimo
    Metadata
    Show full item record
    Abstract
    The agricultural sector has been a key backbone to Kenya’s economy. Agriculture has played a key role in the economy through agricultural farm produce exports and job creation hence improving and maintaining good farming practices is critical in ensuring agricultural yields. Potato (Solanum tuberosum L.) is a major food and cash crop for the country, widely grown by small-scale farmers in the Kenyan highlands. However, early detection of potato diseases such as potato late blight still remains a challenge for both farmers and agricultural extension officers.Consequently agricultural extension officers who play a critical role in training and creating awareness on sound agricultural practices are few and often lack sufficient knowledge and tools.Current techniques used for determining and detecting of crop diseases have heavily relied upon use human vision systems that try to examine physical and phenotypic characteristics such as leaf and stem color. This technique is indeed important for diagnosis of crop diseases, however the use of this technique is not efficient in supporting early detection of crop diseases. This study proposed use of sensors and back propagation algorithm for the prediction of potato late blight disease. Temperature and humidity sensor probes placed on the potato farms were instrumental in monitoring conditions for potato late blight disease. These parameters constituted abiotic factors that favor the development and growth of Phytophthora infestants. Back propagation neural network model was suitable for the prediction of potato late blight disease. In designing the potato late blight prediction model, historical weather data, potato variety tolerance on late blight disease was used to build an artificial neural network disease prediction model.Incoming data streams from the sensors was used to determine level and risk of blight. This study focused on a moderate susceptible cultivator of potato in developing the model. The algorithm was preferred due to its strengths in adaptive learning. The developed model achieved an accuracy of 93.89% while the precision obtained was 0.949. The recall ratio from the neural network was 0.968 and an F-measure of 0.964.
    URI
    http://hdl.handle.net/11071/5685
    Collections
    • MSIT Theses and Dissertations (2017) [34]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of SU+Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV