• Login
    View Item 
    •   SU+ Home
    • Research and Publications
    • Faculty of Information Technology (FIT)
    • FIT Projects, Theses and Dissertations
    • MSIT Theses and Dissertations
    • MSIT Theses and Dissertations (2017)
    • View Item
    •   SU+ Home
    • Research and Publications
    • Faculty of Information Technology (FIT)
    • FIT Projects, Theses and Dissertations
    • MSIT Theses and Dissertations
    • MSIT Theses and Dissertations (2017)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Applying decision tree-based model in tender evaluation: case of Technical University of Mombasa

    Thumbnail
    View/Open
    Fulltext thesis (2.534Mb)
    Date
    2017
    Author
    Mandale, Samuel Kumbu
    Metadata
    Show full item record
    Abstract
    Unfair tender evaluation and contract award in public procurement is prevalent in Kenya. This has contributed to low quality of goods, services and projects. Successful implementation of building projects is heavily impacted by taking the right decision during tendering processes. Manning tender procedures can be complex and uncertain, involving coordination of numerous tasks and persons with different priorities and objectives. Bias and inconsistent decision are inevitable if the decision-making process is wholly dependent on intuition, subjective judgement or emotions. In making transparent decision and beneficial competition tendering, there is need for a flexible tool that could facilitate fair decision making. The purpose of this research was to present a model of an IT solution integrating the concepts of supervised machine learning techniques in the context of tender evaluation in public procurement. A dataset of 100 instances comprising of 53 positive and 47 negative examples was used to train J48 decision tree classifier to build the model. After attribute selection in a WEKA environment, 4 of the 7 attributes of the dataset were used as independent variables (inputs) namely, Experience, Capacity, Number of personnel and Professionalism. A set criteria was used to determine the values of the independent variables. The dependent variable (output) was a category class with either “PASS” or “FAIL” values. To determine the class of an entity the J48 model considers all the values of the independent variables based on set rules. This algorithm was preferred due to its relatively simple model among other benefits stated herein. The dataset from TUM was divided into test data and training data for the model. The performance appraisal of the model was based on the accuracy of the classification, the precision, recall ratio, ROC curve and the F- Measure. The model was proven to be impressively accurate with an accuracy of 91.1765 % while the precision obtained was 0.857. The recall ratio was 1 and an F-measure of 0.923.
    URI
    http://hdl.handle.net/11071/5682
    Collections
    • MSIT Theses and Dissertations (2017) [34]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of SU+Communities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV