Show simple item record

dc.contributor.authorLubega, Mohammad
dc.contributor.authorKaruhanga, Martin
dc.date.accessioned2021-05-17T10:35:28Z
dc.date.available2021-05-17T10:35:28Z
dc.date.issued2019-08
dc.identifier.urihttp://hdl.handle.net/11071/11909
dc.descriptionPaper presented at the 5th Strathmore International Mathematics Conference (SIMC 2019), 12 - 16 August 2019, Strathmore University, Nairobi, Kenyaen_US
dc.description.abstractA nonlinear eigenvalue problem with Robin boundary conditions on a bounded domain is investigated. The existence of a sequence of non-negative eigenvalues is established using the Ljusternik-Shnirelmann principle. Using the variational principle, we also prove that there exists a principal eigenvalue which is the smallest of all the eigenvalues and that the set of eigenvalues is not closed.en_US
dc.description.sponsorshipMbarara University of Science and Technology, Uganda.en_US
dc.language.isoen_USen_US
dc.publisherStrathmore Universityen_US
dc.subjectEigenvaluesen_US
dc.subjectp(x)-Laplacianen_US
dc.subjectLjusternik-Shnirelmann principleen_US
dc.subjectprincipleen_US
dc.titleOn the Eigenvalue problem involving the Robin p (x)-Lap1acianen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • SIMC 2019 [99]
    5th Strathmore International Mathematics Conference (August 12 – 16, 2019)

Show simple item record