Show simple item record

dc.contributor.authorKaruhanga, Martin
dc.descriptionPaper presented at the 5th Strathmore International Mathematics Conference (SIMC 2019), 12 - 16 August 2019, Strathmore University, Nairobi, Kenyaen_US
dc.description.abstractIn this paper, we extend the well-known upper estimates of the Cwikel-Lieb-Rozenblum type for the number of negative eigenvalues of one-dimensional schroedinger operators with regular potentials to the case of strongly singular potentials. In particular, we consider the case when the potential is allowed to be a measure that is not necessarily absolutely continuous with respect to the Lebesgue measure.en_US
dc.description.sponsorshipMbarara University of Science and Technology, Ugandaen_US
dc.publisherStrathmore Universityen_US
dc.subjectNegative eigenvaluesen_US
dc.subjectSchroedinger operatorsen_US
dc.subjectSingular potentialsen_US
dc.titleCounting negative eigenvalues of one-dimensional Schroedinger operators with singular potentialsen_US

Files in this item


This item appears in the following Collection(s)

  • SIMC 2019 [99]
    5th Strathmore International Mathematics Conference (August 12 – 16, 2019)

Show simple item record