Publication:
Analysis of diversity among East African sweet potato cultivars (ipomoea batatas) using morphological and simple sequence repeats dna markers

dc.creatorGichuru, Virginia Gathoni
dc.creatorRubaihayo (Prof.), Patrick
dc.creatorLubega (Dr.), George
dc.date01/23/2013
dc.dateWed, 23 Jan 2013
dc.dateThu, 24 Jan 2013 13:01:59
dc.dateThu, 24 Jan 2013 13:46:03
dc.date.accessioned2015-03-18T11:28:48Z
dc.date.available2015-03-18T11:28:48Z
dc.descriptionA Thesis submitted in partial fulfillment of the requirements for the degree of master of science in molecular biology of Makerere University, Kampala. Full thesis.
dc.descriptionEast Africa is considered to be a secondary centre of origin of sweet potato and it is suspected that the wide morphological variation observed indicates wide genetic diversity in the region. To conserve and utilize the germplasm, it is important that proper assessment of the diversity of the East African sweet potato germplasm be made.Identification by molecular technologies is more commonly used over morphological characters since the latter can be influenced by environmental factors. In this study, we used molecular and morphological markers to study the genetic diversity of the germplasm in the region. Collections of cultivars were made from selected locations of Uganda, Kenya and Tanzania and subsequently established in pots in a screen house at Makerere University. A total of 266 cultivars were collected. After 3 weeks, the cultivars were screened for morphological characters using the CIP Research Guide. Cluster analysis was done using UPGMA in Treecon (Version 1.3). Based on morphological grouping, 57 cultivars, which were morphologically diverse, were randomly selected for DNA extraction and further analysis was done. Cluster analysis revealed only two major groupings (A & B) of sweet potatoes with very low bootstrap support of 0-54 %. The key distinguishing morphological markers were triangular leaf outline and a cordate shaped leaf outline for group A & B respectively. In addition, there were no geographical distinct morphological types identified. No population structure was detected. However, within each country, a high variation was observed (97.65%), suggesting that a wide range of cultivars is being grown in each country. Microsatellite (SSR) reactions were performed using four SSR primer combinations. The polymerase chain reaction (PCR) products were resolved using a high resolution metaphor agarose gel electrophoresis. Genetic distance data matrices were subjected to Unweighted pair-group method of arithmetic averages (UPGMA) clustering using TREECON phylogenetic program Version 1.3 b. Two major sub-clusters were found by UPGMA at a bootstrap value of 54 %. Low bootstrap values (0-55 %) indicate absence of clusters and close genetic relationships among the cultivars. The majority of cultivars were in the range of 0.1-0.3 Nei's genetic distance from each other, which also shows close genetic relatedness. The clustering of sweet potato cultivars based on SSR markers showed that cultivars from Kenya, Uganda and Tanzania were grouping in group A. In sub-cluster B the cultivars were from Uganda and they seemed to form a unique group. However the Tanzanian cultivars seem to cluster closely together in various sub-clusters. Analysis of Molecular Variance (AMOVA) indicated that there is statistically measurable divergence between the sweet potato of Uganda-Kenya and the other East-African country, Tanzania with detectable difference between the cultivars of the three sources. The largest source of diversity comes from within-population variation, which accounts for 88.91 % of the total variance. The data from AMOVA analysis also indicated an F st value >0.05 which seems to suggest great genetic differentiation amongst the cultivars in the East African region and hence presence of a population structure. The gene flow values > 1 shows that there is high genetic drift amongst the cultivars in this region. In this study, the morphological analysis of sweet potato landraces indicated that there was not much variation in the East African sweet potato. However the investigation at genome level using PCR-based SSR markers was able to identify significant variation amongst the landraces and existence of a population structure. The major results in this study indicate that SSR markers are appropriate for the genotyping and revealing genetic relationship of East African sweetpotato cultivars. In addition, morphological characterisation should be complemented with DNA –based characterisation using SSR markers to reveal genetic diversity of East African sweet potato cultivars.
dc.description.abstractEast Africa is considered to be a secondary centre of origin of sweet potato and it is suspected that the wide morphological variation observed indicates wide genetic diversity in the region. To conserve and utilize the germplasm, it is important that proper assessment of the diversity of the East African sweet potato germplasm be made.Identification by molecular technologies is more commonly used over morphological characters since the latter can be influenced by environmental factors. In this study, we used molecular and morphological markers to study the genetic diversity of the germplasm in the region. Collections of cultivars were made from selected locations of Uganda, Kenya and Tanzania and subsequently established in pots in a screen house at Makerere University. A total of 266 cultivars were collected. After 3 weeks, the cultivars were screened for morphological characters using the CIP Research Guide. Cluster analysis was done using UPGMA in Treecon (Version 1.3). Based on morphological grouping, 57 cultivars, which were morphologically diverse, were randomly selected for DNA extraction and further analysis was done. Cluster analysis revealed only two major groupings (A & B) of sweet potatoes with very low bootstrap support of 0-54 %. The key distinguishing morphological markers were triangular leaf outline and a cordate shaped leaf outline for group A & B respectively. In addition, there were no geographical distinct morphological types identified. No population structure was detected. However, within each country, a high variation was observed (97.65%), suggesting that a wide range of cultivars is being grown in each country. Microsatellite (SSR) reactions were performed using four SSR primer combinations. The polymerase chain reaction (PCR) products were resolved using a high resolution metaphor agarose gel electrophoresis. Genetic distance data matrices were subjected to Unweighted pair-group method of arithmetic averages (UPGMA) clustering using TREECON phylogenetic program Version 1.3 b. Two major sub-clusters were found by UPGMA at a bootstrap value of 54 %. Low bootstrap values (0-55 %) indicate absence of clusters and close genetic relationships among the cultivars. The majority of cultivars were in the range of 0.1-0.3 Nei's genetic distance from each other, which also shows close genetic relatedness. The clustering of sweet potato cultivars based on SSR markers showed that cultivars from Kenya, Uganda and Tanzania were grouping in group A. In sub-cluster B the cultivars were from Uganda and they seemed to form a unique group. However the Tanzanian cultivars seem to cluster closely together in various sub-clusters. Analysis of Molecular Variance (AMOVA) indicated that there is statistically measurable divergence between the sweet potato of Uganda-Kenya and the other East-African country, Tanzania with detectable difference between the cultivars of the three sources. The largest source of diversity comes from within-population variation, which accounts for 88.91 % of the total variance. The data from AMOVA analysis also indicated an F st value >0.05 which seems to suggest great genetic differentiation amongst the cultivars in the East African region and hence presence of a population structure. The gene flow values > 1 shows that there is high genetic drift amongst the cultivars in this region. In this study, the morphological analysis of sweet potato landraces indicated that there was not much variation in the East African sweet potato. However the investigation at genome level using PCR-based SSR markers was able to identify significant variation amongst the landraces and existence of a population structure. The major results in this study indicate that SSR markers are appropriate for the genotyping and revealing genetic relationship of East African sweetpotato cultivars. In addition, morphological characterisation should be complemented with DNA –based characterisation using SSR markers to reveal genetic diversity of East African sweet potato cultivars.
dc.formatNumber of Pages:lxxxiii
dc.identifier.urihttp://hdl.handle.net/11071/3420
dc.languageeng
dc.rightsBy agreeing with and accepting this license, I (the author(s), copyright owner or nominated agent) agree to the conditions, as stated below, for deposit of the item (referred to as .the Work.) in the digital repository maintained by Strathmore University, or any other repository authorized for use by Strathmore University. Non-exclusive Rights Rights granted to the digital repository through this agreement are entirely non-exclusive. I understand that depositing the Work in the repository does not affect my rights to publish the Work elsewhere, either in present or future versions. I agree that Strathmore University may electronically store, copy or translate the Work to any approved medium or format for the purpose of future preservation and accessibility. Strathmore University is not under any obligation to reproduce or display the Work in the same formats or resolutions in which it was originally deposited. SU Digital Repository I understand that work deposited in the digital repository will be accessible to a wide variety of people and institutions, including automated agents and search engines via the World Wide Web. I understand that once the Work is deposited, metadata may be incorporated into public access catalogues. I agree as follows: 1.That I am the author or have the authority of the author/s to make this agreement and do hereby give Strathmore University the right to make the Work available in the way described above. 2.That I have exercised reasonable care to ensure that the Work is original, and to the best of my knowledge, does not breach any laws including those relating to defamation, libel and copyright. 3.That I have, in instances where the intellectual property of other authors or copyright holders is included in the Work, gained explicit permission for the inclusion of that material in the Work, and in the electronic form of the Work as accessed through the open access digital repository, or that I have identified that material for which adequate permission has not been obtained and which will be inaccessible via the digital repository. 4.That Strathmore University does not hold any obligation to take legal action on behalf of the Depositor, or other rights holders, in the event of a breach of intellectual property rights, or any other right, in the material deposited. 5.That if, as a result of my having knowingly or recklessly given a false statement at points 1, 2 or 3 above, the University suffers loss, I will make good that loss and indemnify Strathmore University for all action, suits, proceedings, claims, demands and costs occasioned by the University in consequence of my false statement.
dc.subjectSweet potato cultivars
dc.subjectIpomoea batatas
dc.titleAnalysis of diversity among East African sweet potato cultivars (ipomoea batatas) using morphological and simple sequence repeats dna markers
dc.typeThesis
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Analysis of diversity among East African sweet potato cultivars (ipomoea batatas) using morphological and simple sequence repeats dna markers.pdf
Size:
722.69 KB
Format:
Adobe Portable Document Format
Description: