Browsing by Author "Turyahikayo, G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- PublicationSwer (single wire earth return) systems user applications – optimizing the use of this cost–effective electrification tool with suitable end-user applications' – the Ugandan caseDa Silva, Izael; Da Silva, I. P; Simonis, P.; Roeber, J.; Turyahikayo, G.; Merwe, V.The access to electricity is becoming a major demand in all societies in the developing countries. The declared aim of Uganda’s Ministry of Energy and Mineral Development to increase the access to electricity to 10% of Uganda’s population implies the electrification of 40,000 rural household per year, bringing ‘power to the people’. Access to electricity is directly associated with higher levels of living conditions. Individual households, (rural and urban) when provided with electricity have better conditions of cleanliness, health and self-empowerment. Key institutions in society (private, governmental, non-governmental, parastatal) also require electricity to enhance the effectiveness and efficiency of their operations and programmes. The introduction of SWER (Single Wire Earth Return) technology has significant merits regarding cost effectiveness to supply electricity to remote areas. This is especially the case where a strong backbone reticulation system is in place to supply high load centres (such as mines and larger towns, water pumping installations). Additional rural settlements and low demand settlements with clinics, schools, hostels, small borehole pumping installations can be adequately supplied with SWER (Single Wire Earth Return) technology.
- PublicationThe use of single wire earth return (SWER) as a potential solution to reduce the cost of rural electrification in Uganda(Domestic use of energy conference, ) Da Silva, Izael; Da Silva, I.P; Mugisha, P.; Simonis, P.; Turyahikayo, G.The rural electrification in Uganda is facing an enormous challenge following the ongoing process of privatisation/liberalisation of the power sector. The Electricity Act enacted in November 1999 provides for more power utilities in the generation, transmission and distribution of electricity, ending a more than 40 years of monopoly of Uganda Electricity Board (UEB), a government parastatal. One of the consequences of this Act is that rural electrification pass to be responsibility of the Ministry of Energy and Mineral Development. This ministry issued a document “Rural Electrification, Strategy and Plan”[1] whose overall objective is to increase electricity accessibility in the rural areas from the actual less than 1% to 10% within 10 years. It supposes to electrify 300,000 new rural households. This objective is meant to be achieved using gridextension, mini-grids and photovoltaic solar systems. This present paper considers the possibility of using SWER for grid-extension and mini-grids aiming at reducing costs. Technical and regulatory aspects are presented.