Model-Assisted Estimation of Finite Population Mean in Two-stage Cluster Sampling

dc.creatorBii, Nelson Kiprono
dc.creatorOnyango, Christopher Ouma
dc.date08/04/2014
dc.dateMon, 4 Aug 2014
dc.dateMon, 4 Aug 2014 18:14:29
dc.dateMon, 4 Aug 2014 18:14:29
dc.date.accessioned2015-03-18T11:29:14Z
dc.date.available2015-03-18T11:29:14Z
dc.descriptionPublication
dc.descriptionEstimation of finite population parameters has been an area of concern to statisticians for decades. This paper presents an estimation of the population mean under a model-assisted approach.Dorfman (1992), Breidt and Opsomer (2000) and Ouma et al(2010) carried out theestimation of finite population total on the assumption that the sample size is large and the sampling distribution is approximately normal. Unlike their researches, this paper considered a case when the sample size is small under a model-assisted approach. A model-assisted regression model was considered in a case where the cluster sizes are known only for the sampled clusters in order to predict the unobserved part of the population mean. Under mild assumptions, the proposed estimator is asymptotically unbiased and its conditional error variance tends to zero. Simulation studies show that model assisted estimation performs better than model based estimation of a finite population mean in a case where the sample size is small.
dc.description.abstractEstimation of finite population parameters has been an area of concern to statisticians for decades. This paper presents an estimation of the population mean under a model-assisted approach.Dorfman (1992), Breidt and Opsomer (2000) and Ouma et al(2010) carried out theestimation of finite population total on the assumption that the sample size is large and the sampling distribution is approximately normal. Unlike their researches, this paper considered a case when the sample size is small under a model-assisted approach. A model-assisted regression model was considered in a case where the cluster sizes are known only for the sampled clusters in order to predict the unobserved part of the population mean. Under mild assumptions, the proposed estimator is asymptotically unbiased and its conditional error variance tends to zero. Simulation studies show that model assisted estimation performs better than model based estimation of a finite population mean in a case where the sample size is small.
dc.identifier.urihttp://hdl.handle.net/11071/3807
dc.languageeng
dc.rightsBy agreeing with and accepting this license, I (the author(s), copyright owner or nominated agent) agree to the conditions, as stated below, for deposit of the item (referred to as .the Work.) in the digital repository maintained by Strathmore University, or any other repository authorized for use by Strathmore University. Non-exclusive Rights Rights granted to the digital repository through this agreement are entirely non-exclusive. I understand that depositing the Work in the repository does not affect my rights to publish the Work elsewhere, either in present or future versions. I agree that Strathmore University may electronically store, copy or translate the Work to any approved medium or format for the purpose of future preservation and accessibility. Strathmore University is not under any obligation to reproduce or display the Work in the same formats or resolutions in which it was originally deposited. SU Digital Repository I understand that work deposited in the digital repository will be accessible to a wide variety of people and institutions, including automated agents and search engines via the World Wide Web. I understand that once the Work is deposited, metadata may be incorporated into public access catalogues. I agree as follows: 1.That I am the author or have the authority of the author/s to make this agreement and do hereby give Strathmore University the right to make the Work available in the way described above. 2.That I have exercised reasonable care to ensure that the Work is original, and to the best of my knowledge, does not breach any laws including those relating to defamation, libel and copyright. 3.That I have, in instances where the intellectual property of other authors or copyright holders is included in the Work, gained explicit permission for the inclusion of that material in the Work, and in the electronic form of the Work as accessed through the open access digital repository, or that I have identified that material for which adequate permission has not been obtained and which will be inaccessible via the digital repository. 4.That Strathmore University does not hold any obligation to take legal action on behalf of the Depositor, or other rights holders, in the event of a breach of intellectual property rights, or any other right, in the material deposited. 5.That if, as a result of my having knowingly or recklessly given a false statement at points 1, 2 or 3 above, the University suffers loss, I will make good that loss and indemnify Strathmore University for all action, suits, proceedings, claims, demands and costs occasioned by the University in consequence of my false statement.
dc.subjectModel-assisted surveys
dc.subjectnon-parametric inference
dc.subjecttwo-stage cluster sampling
dc.titleModel-Assisted Estimation of Finite Population Mean in Two-stage Cluster Sampling
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MODEL-ASSISTED ESTIMATION OF POPULATION MEAN IN TWO- STAGE CLUSTER.pdf
Size:
65.5 KB
Format:
Adobe Portable Document Format
Description:
Article