Show simple item record

dc.contributor.authorMaywa, Nickson K.
dc.date.accessioned2017-03-03T07:16:58Z
dc.date.available2017-03-03T07:16:58Z
dc.date.issued2015
dc.identifier.urihttp://hdl.handle.net/11071/5096
dc.description.abstractThis research paper forecasts the time -varying daily beta of ten stocks listed in the Nairobi Securities Exchange 20- Share Index by use of a Bivariate GARCH (1, 1) model and the Kalman filter method. A comparison of the forecasting ability of the GARCH model and the Kalman filter method is made. Forecast errors based on the retUI11 forecasts are used to evaluate the outof- sample forecasting ability of both the GARCH model and the Kalman method. Two measures of error are used: MAE and MSE. The results are inconclusive, based on MSE the Kalman method is superior while based on MAE, the Bivariate GARCH (1, 1) method appears to provide more accurate forecasts of the time-varying beta .en_US
dc.language.isoenen_US
dc.publisherStrathmore Universityen_US
dc.subjectBivariate GARCH (1, 1)en_US
dc.subjectForecastingen_US
dc.subjectKalman Filter.en_US
dc.titleForecasting the time varying-beta of nse-20 share companies: Bi-variate garch (1, 1) model vs kalman filter methoden_US
dc.typeLearning Objecten_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record