

STRATHMORE INSTITUTE OF MATHEMATICAL SCIENCES BACHELOR OF BUSINESS SCIENCE: ACTUARIAL SCIENCE, FINANCIAL ECONOMICS AND FINANCIAL ENGINEERING END OF SEMESTER EXAMINATION BSE 2205: INTERMEDIATE ECONOMETRICS

Date: 6th December, 2022

Time: 2.5 hours

Instructions

- 1. This examination consists of **Five** questions.
- 2. Answer Question One(Compulsory) and any other two questions.

Question 1

(a) Consider the model $Y = X\beta + U$ where $Y = \begin{bmatrix} y_1 & y_2 & y_3 \dots & y_n \end{bmatrix}'$,

 $X = \begin{bmatrix} 1 & x_{21} & x_{31} & \dots & x_{K1} \\ 1 & x_{22} & x_{32} & \dots & x_{K2} \\ 1 & x_{23} & x_{33} & \dots & x_{K3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{2n} & x_{3n} & \dots & x_{Kn} \end{bmatrix}, \beta = \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 & \dots & \beta_K \end{bmatrix} \text{ and } \begin{bmatrix} U_1 & U_2 & U_3 \dots & U_n \end{bmatrix}'$

- (i) If U is the residual, derive $\hat{\beta}_{OLS}$ using matrix algebra {3 marks}
- (ii) Show that $\hat{\beta}_{OLS}$ is unbiased {3 marks}
- (iii) Derive the expression for $var(\hat{\beta}_{OLS})$ {2 marks}
- (iv) If $Y = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \end{bmatrix}'$ and $x_2 = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \end{bmatrix}'$ find $\hat{\beta}_{OLS}$ using the expression derived in 1a(i) above {3 marks}
- (v) If $\sigma^2 = \frac{6}{25}$ find $var(\hat{\beta}_{OLS})$ using the expression in 1a(ii) above {3 marks}
- (vi) What t-statistic is associated with the slope and intercept parameters given the estimates in 1a(iv) and 1a(v) above? {3 marks}

(b) Consider the model $y_i = \beta_1 + \beta_2 x_{2i} + \epsilon_i$. Required:

- (i) State the OLS assumption that would be violated if x_{2i} was endogenous {2 marks}
- (ii) What would be the consequences of the endogeneity of x_{2i} ? {4 marks}
- (iii) One of the methods of dealing with endogeneity requires that we understand how to derive $\hat{\beta}_{OLS}$ but with the generalized method of moments (GMM). Derive $\hat{\beta}_{GMM}$ for the equation in 1(b) above {5 marks}
- (iv) Suggest the solution for endogeneity implied in 1b(iii) above {2 marks}

Question 2

You are given the following data sampling process $y_i = \beta_1 + \beta_2 x_{2i} + \epsilon_i$ where:

$$\epsilon_i = \sqrt{x_{2i}} * u_i$$
$$u_i \stackrel{iid}{\sim} N(0, 1)$$

and x_{2i} is a non-stochastic positive variable.

- (a) Show that this model is heteroskedastic {2 marks}
- (b) If the empirical information is $Y = \begin{bmatrix} 4 & 2 & 5 & 7 \end{bmatrix}'$ and $x_{2i} = \begin{bmatrix} 1 & 1 & 4 & 4 \end{bmatrix}'$. Estimate $\hat{\beta}_{OLS}$ {2 marks}
- (c) What are the characteristics of $\hat{\beta}_{OLS}$? {2 marks}
- (d) Discuss how you would transform the data so that you could remove the heteroskedasticity {2 marks}
- (e) Now estimate the model with the empirical information given in section (b), but by GLS. {4 marks}

(f) Show that in this case
$$var(\hat{\beta}_{GLS}) = \begin{bmatrix} \frac{10}{9} & -\frac{4}{9} \\ -\frac{4}{9} & \frac{5}{18} \end{bmatrix} \{2 \text{ marks}\}$$

- (g) Supply the robust standard errors that can be used to test the significance of β_1 and β_2 in 2(c) above {2 marks}
- (h) The figure below shows edited stata output detailing results for a heteroscedasticity test. Use it to test whether the reference estimation was heteroscedastic. {2 marks}

. hettest	
Breusch-Pagan/Cook-Weisberg test for heteroskedasticity Assumption: Normal error terms Variable: Fitted values of price	
H0: Constant variance	
chi2(1) = 105.75 Prob > chi2 = 0.0000	

(i) Benji ran the following regression $\operatorname{Price}_i = \beta_1 + \beta_2 \operatorname{lotsize} + u_i$. If this regression was heteroscedastic and price and lot-size are positively related, sketch the distribution of price around the line of best fit. {2 marks}

[20 marks]

Question 3

Consider the following data sampling process

$$Y_t = \beta x_t + \epsilon_t \text{ where}$$

$$\epsilon_t = 0.6\epsilon_{t-1} + U_t$$

$$U_t \stackrel{iid}{\sim} N(0, 1)$$

You are told that x is exogenous and are also given the following matrices: $X'X = \begin{bmatrix} 20 & 10 \\ 10 & 10 \end{bmatrix}', X'y = \begin{bmatrix} 86.6 \\ 68.4 \end{bmatrix}', X'\Psi X = \begin{bmatrix} 72.5 & 36.25 \\ 36.25 & 32.55 \end{bmatrix}', X'\Psi^{-1}X = \begin{bmatrix} 5.75 & 2.875 \\ 2.875 & 3.8125 \end{bmatrix}'$ and $X'\Psi^{-1}y = \begin{bmatrix} 25.475\\ 25.29375 \end{bmatrix}'$ where $\sigma^2\Psi$ is $\mathcal{E}(\epsilon\epsilon')$ Required:

- (a) Assume that $\epsilon_t \sim N(\mu_{\epsilon}, \sigma_{\epsilon}^2)$ for every t. Show that $\mu_{\epsilon} = 0$ and $\operatorname{var}(\epsilon_t) = \frac{25}{16} \{3\}$ marks}
- (b) What is the shape and dimension of Ψ ? (You don't have to write it out in full) {4 marks}
- (c) Estimate β_1 and β_2 using OLS {3 marks}
- (d) Discuss the characteristics of $\hat{\beta}_{OLS}$ {5 marks}
- (e) Estimate the true value of variance-covariance matrix of β_{OLS} {3 mark}
- (f) Test the null hypothesis that $\beta_2 = 0$ using your OLS estimator of β_2 {2 marks}

[20 marks]

Question 4

You are given the following model $y_i = \beta_1 + \beta_2 x_{2i} + \epsilon_i$. The predictor x_{2i} is a categorical variable for marital status. A respondent is either married or not married.

- (a) Given the nature of x_{2i} state the dummies that can be constructed from this categorical variable $\{1 \text{ mark}\}$
- (b) If n = 5 construct matrix X given the dummies in 4(a) above {2 marks}
- (c) Using the matrix X, identify two problems that one would experience if the variables in X were to be used as independent variables in a regression $\{4 \text{ marks}\}$
- (d) State the three possible models that an investigator who is interested on the effect of marital status on wages would estimate to avoid the problems in 4(c) above {3 marks}
- (e) For one of the models with a constant find the conditional expectation of wages, $|married_i| = 1$ 1 and wages_i | married_i = 0 {2 marks}
- (f) Use the findings 4(e) above to provide the theoretical interpretation of β_2 {1 mark}
- (g) After running the three models in 4(d) you obtain the following results. Use the results to answer the following questions:

VARIABLES	Married	Not Married	Both Dummies
Married	1.166***		6.313***
	(0.112)		(0.0775)
Not Married		-1.166***	5.147***
		(0.112)	(0.0812)
Constant	5.147***	6.313***	
	(0.0812)	(0.0775)	
Observations	3,294	3,294	3,294
R-squared	0.032	0.032	0.764
Standard errors in	parentheses		
*** p<0.01, ** p	<0.05, * p<0.1		

- (i) Interpret the parameters in all the three models {3 marks}
- (ii) Does marriage boost earnings? {1 mark}

. vif

(h) The following results show the variance inflation factor for a given regression. What problem is this researcher experiencing? What solution would you advise this researcher to explore to deal with the problem? {3 marks}

Variable	VIF	1/VIF
lp1 lp2 lnm	47.35 45.21 14.66	0.021118 0.022118 0.068208
Mean VIF	35.74	

[20 marks]

Question 5

Figure 1 shows the estimates for the regression model

Home $\text{Ownership}_i = \beta_1 + \beta_2 \text{income}_i + \beta_3 \text{level of education}_i + \epsilon_i$

Aodel		Probit	Logit	LPM
Goodness of fit	Log likelihood	-20.532	-20.460	-
	LR test chi(2)	13.99***	14.13***	-
	F(2, 37)			8.62***
	Pseudo R square	0.254	0.257	
	R square	-	-	0.3179
Income	Coefficient	0.195**	0.328**	0.067**
	Z statistic	2.02	2.03	2.32
	P value	0.043	0.042	0.026
	Marginal effects	0.057**	0.055**	-
	Z statistic	2.39	2.54	-
	P value	0.017	0.011	-
Education	Coefficient	-0.023	-0.014	-0.012
	Z statistic	-0.07	-0.03	-0.11
	P value	0.946	0.980	0.913
	Marginal effects	-0.007	-0.002	-
	Z statistic	-0.07	-0.03	-
	P value	-0.946	0.980	-
Intercept	Constant	-2.557***	-4.407***	-0.373
	Z statistic	-3.20	-2.95	-1.60
	P value	0.001	0.003	0.118
V	***significant at 1%			
Key	**significant At 5%			

Figure 1: Influence of income and level of education on home ownership

- (a) Write the complete expressions for the probability density function (p.d.f.) and cumulative distribution function (c.d.f.) {3 marks}
- (b) What is the probability that a family owns a house i.e. $P\{y_i = 1 | x_i\}$ and the probability that a family does not own a house i.e. $P\{y_i = 0 | x_i\}$ {3 marks}
- (c) What are the shorting comings of the LPM model vis a vis the probit and logit model? {4 marks}
- (d) Interpret the LPM coefficient of for income (income was measured in thousand Kenya shillings){3 marks}
- (e) How does this coefficient compare with the marginal effects of the probit and logit model {3 marks}
- (f) What is the effect of education on the probability of owning a home {2 marks}
- (g) Should the variable education be dropped from the model {2 marks}

[20 marks]

Be More be Strathmore! \bigcirc