STRATHM ORE INSTITUTE OF MATHEMATICAL SCIENCES BACHELOR OF BUSINESS SCIENCE: ACTUARIAL SCIENCE, FINANCIAL ECONOMICS AND FINANCIAL ENGINEERING

END OF SEM ESTER EXAMINATION
BSE 2205: INTERM EDIATE ECONOM ETRICS

Date: $6^{\text {th }}$ December, 2022
Time: 2.5 hours

Instructions

1. This examination consists of Five questions.
2. Answer Question One(Compulsory) and any other two questions.

Question 1

(a) Consider the model $Y=X \beta+U$ where $Y=\left[\begin{array}{llll}y_{1} & y_{2} & y_{3} \ldots & y_{n}\end{array}\right]^{\prime}$,
$X=\left[\begin{array}{ccccc}1 & x_{21} & x_{31} & \ldots & x_{K 1} \\ 1 & x_{22} & x_{32} & \ldots & x_{K 2} \\ 1 & x_{23} & x_{33} & \ldots & x_{K 3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{2 n} & x_{3 n} & \ldots & x_{K n}\end{array}\right], \beta=\left[\begin{array}{lllll}\beta_{1} & \beta_{2} & \beta_{3} & \ldots \beta_{K}\end{array}\right]$ and $\left[\begin{array}{llll}U_{1} & U_{2} & U_{3} \ldots & U_{n}\end{array}\right]^{\prime}$
(i) If U is the residual, derive $\hat{\beta}_{O L S}$ using matrix algebra $\{3$ marks $\}$
(ii) Show that $\hat{\beta}_{O L S}$ is unbiased $\{3$ marks $\}$
(iii) Derive the expression for $\operatorname{var}\left(\hat{\beta}_{O L S}\right)\{2$ marks $\}$
(iv) If $Y=\left[\begin{array}{lllll}0 & 1 & 0 & 1 & 0\end{array}\right]^{\prime}$ and $x_{2}=\left[\begin{array}{lllll}0 & 1 & 1 & 0 & 0\end{array}\right]^{\prime}$ find $\hat{\beta}_{O L S}$ using the expression derived in 1a(i) above $\{3$ marks $\}$
(v) If $\sigma^{2}=\frac{6}{25}$ find $\operatorname{var}\left(\hat{\beta}_{O L S}\right)$ using the expression in 1a(ii) above $\{3$ marks $\}$
(vi) What t-statistic is associated with the slope and intercept parameters given the estimates in $1 \mathrm{a}(\mathrm{iv})$ and $1 \mathrm{a}(\mathrm{v})$ above? \{3 marks $\}$
(b) Consider the model $y_{i}=\beta_{1}+\beta_{2} x_{2 i}+\epsilon_{i}$. Required:
(i) State the OLS assumption that would be violated if $x_{2 i}$ was endogenous $\{2$ marks $\}$
(ii) What would be the consequences of the endogeneity of $x_{2 i}$? \{4 marks $\}$
(iii) One of the methods of dealing with endogeneity requires that we understand how to derive $\hat{\beta}_{\text {OLS }}$ but with the generalized method of moments (GMM). Derive $\hat{\beta}_{G M M}$ for the equation in 1 (b) above $\{5$ marks $\}$
(iv) Suggest the solution for endogeneity implied in 1 b (iii) above $\{2$ marks $\}$

Question 2

You are given the following data sampling process $y_{i}=\beta_{1}+\beta_{2} x_{2 i}+\epsilon_{i}$ where:

$$
\begin{gathered}
\epsilon_{i}=\sqrt{x_{2 i}} * u_{i} \\
u_{i} \stackrel{i i d}{\sim} N(0,1)
\end{gathered}
$$

and $x_{2 i}$ is a non-stochastic positive variable.
(a) Show that this model is heteroskedastic $\{2$ marks $\}$
(b) If the empirical information is $Y=\left[\begin{array}{llll}4 & 2 & 5 & 7\end{array}\right]^{\prime}$ and $x_{2 i}=\left[\begin{array}{llll}1 & 1 & 4 & 4\end{array}\right]^{\prime}$. Estimate $\hat{\beta}_{O L S}\{2$ marks $\}$
(c) What are the characteristics of $\hat{\beta}_{O L S}$? \{2 marks $\}$
(d) Discuss how you would transform the data so that you could remove the heteroskedasticity \{2 marks $\}$
(e) Now estimate the model with the empirical information given in section (b), but by GLS. \{4 marks $\}$
(f) Show that in this case $\operatorname{var}\left(\hat{\beta}_{G L S}\right)=\left[\begin{array}{cc}\frac{10}{9} & -\frac{4}{9} \\ -\frac{4}{9} & \frac{5}{18}\end{array}\right]\{2$ marks $\}$
(g) Supply the robust standard errors that can be used to test the significance of β_{1} and β_{2} in 2(c) above $\{2$ marks $\}$
(h) The figure below shows edited stata output detailing results for a heteroscedasticity test. Use it to test whether the reference estimation was heteroscedastic. $\{2$ marks $\}$

(i) Benji ran the following regression $\operatorname{Price}_{i}=\beta_{1}+\beta_{2}$ lotsize $+u_{i}$. If this regression was heteroscedastic and price and lot-size are positively related, sketch the distribution of price around the line of best fit. \{2 marks $\}$

Question 3

Consider the following data sampling process

$$
\begin{array}{r}
Y_{t}=\beta x_{t}+\epsilon_{t} \text { where } \\
\epsilon_{t}=0.6 \epsilon_{t-1}+U_{t} \\
U_{t} \stackrel{i i d}{\sim} N(0,1)
\end{array}
$$

You are told that x is exogenous and are also given the following matrices:
$X^{\prime} X=\left[\begin{array}{ll}20 & 10 \\ 10 & 10\end{array}\right]^{\prime}, X^{\prime} y=\left[\begin{array}{l}86.6 \\ 68.4\end{array}\right]^{\prime}, X^{\prime} \Psi X=\left[\begin{array}{cc}72.5 & 36.25 \\ 36.25 & 32.55\end{array}\right]^{\prime}, X^{\prime} \Psi^{-1} X=\left[\begin{array}{cc}5.75 & 2.875 \\ 2.875 & 3.8125\end{array}\right]^{\prime}$ and $X^{\prime} \Psi^{-1} y=\left[\begin{array}{c}25.475 \\ 25.29375\end{array}\right]^{\prime}$ where $\sigma^{2} \Psi$ is $\mathrm{E}\left(\epsilon \epsilon^{\prime}\right)$
Required:
(a) Assumme that $\epsilon_{t} \sim N\left(\mu_{\epsilon}, \sigma_{\epsilon}^{2}\right)$ for every t. Show that $\mu_{\epsilon}=0$ and $\operatorname{var}\left(\epsilon_{t}\right)=\frac{25}{16}\{3$ marks $\}$
(b) What is the shape and dimension of Ψ ? (You don't have to write it out in full) \{4 marks\}
(c) Estimate β_{1} and β_{2} using OLS $\{3$ marks $\}$
(d) Discuss the characteristics of $\hat{\beta}_{O L S}\{5$ marks $\}$
(e) Estimate the true value of variance-covariance matrix of $\hat{\beta}_{O L S}\{3$ mark $\}$
(f) Test the null hypothesis that $\beta_{2}=0$ using your OLS estimator of $\beta_{2}\{2$ marks $\}$
[20 marks]

Question 4

You are given the following model $y_{i}=\beta_{1}+\beta_{2} x_{2 i}+\epsilon_{i}$. The predictor $x_{2 i}$ is a categorical variable for marital status. A respondent is either married or not married.
(a) Given the nature of $x_{2 i}$ state the dummies that can be constructed from this categorical variable $\{1$ mark $\}$
(b) If $n=5$ construct matrix X given the dummies in 4(a) above $\{2$ marks $\}$
(c) Using the matrix X, identify two problems that one would experience if the variables in X were to be used as independent variables in a regression $\{4$ marks $\}$
(d) State the three possible models that an investigator who is interested on the effect of marital status on wages would estimate to avoid the problems in 4(c) above $\{3$ marks\}
(e) For one of the models with a constant find the conditional expectation of wages $\mid \operatorname{marrried}_{i}=$ 1 and wages $_{i} \mid$ married $_{i}=0\{2$ marks $\}$
(f) Use the findings 4(e) above to provide the theoretical interpretation of $\beta_{2}\{1$ mark $\}$
(g) After running the three models in 4(d) you obtain the following results. Use the results to answer the following questions:

VARIABLES	Married	Not Married	Both Dummies
Married	$1.166^{* * *}$		$6.313^{* * *}$
	(0.112)		(0.0775)
Not Married		$-1.166^{* * *}$	$5.147^{* * *}$
		(0.112)	(0.0812)
Constant	$5.147 * * *$	$6.313 * * *$	
	(0.0812)	(0.0775)	
Observations	3,294	3,294	3,294
R-squared	0.032	0.032	0.764
Standard errors in parentheses			
$* * * \mathrm{p}<0.01, * * \mathrm{p}<0.05, * \mathrm{p}<0.1$			

(i) Interpret the parameters in all the three models $\{3$ marks $\}$
(ii) Does marriage boost earnings? \{1 mark $\}$
(h) The following results show the variance inflation factor for a given regression. What problem is this researcher experiencing? What solution would you advise this researcher to explore to deal with the problem? \{3 marks\}
. vif

[20 marks]

Question 5

Figure 1 shows the estimates for the regression model

$$
{\text { Home } \text { Ownership }_{i}=\beta_{1}+\beta_{2} \text { income }_{i}+\beta_{3} \text { level of education }}_{i}+\epsilon_{i}
$$

Figure 1: Influence of income and level of education on home ownership

Model		Probit	Logit	LPM
Goodness of fit	Log likelihood	-20.532	-20.460	-
	LR test chi(2)	13.99***	14.13***	-
	$\mathrm{F}(2,37)$			8.62***
	Pseudo R square	0.254	0.257	
	R square	-	-	0.3179
Income	Coefficient	0.195**	0.328**	0.067**
	Z statistic	2.02	2.03	2.32
	P value	0.043	0.042	0.026
	Marginal effects	0.057**	0.055**	-
	Z statistic	2.39	2.54	-
	P value	0.017	0.011	-
Education	Coefficient	-0.023	-0.014	-0.012
	Z statistic	-0.07	-0.03	-0.11
	P value	0.946	0.980	0.913
	Marginal effects	-0.007	-0.002	-
	Z statistic	-0.07	-0.03	-
	P value	-0.946	0.980	-
Intercept	Constant	-2.557***	-4.407***	-0.373
	Z statistic	-3.20	-2.95	-1.60
	P value	0.001	0.003	0.118
Key	***significant at 1%			
	**significant At 5\%			

(a) Write the complete expressions for the probability density function (p.d.f.) and cumulative distribution fucntion (c.d.f.) $\{3$ marks $\}$
(b) What is the probability that a family owns a house i.e. $P\left\{y_{i}=1 \mid x_{i}\right\}$ and the probability that a family does not own a house i.e. $P\left\{y_{i}=0 \mid x_{i}\right\}\{3$ marks $\}$
(c) What are the shorting comings of the LPM model vis a vis the probit and logit model? \{4 marks $\}$
(d) Interpret the LPM coefficient of for income (income was measured in thousand Kenya shillings) $\{3$ marks $\}$
(e) How does this coefficient compare with the marginal effects of the probit and logit model $\{3$ marks $\}$
(f) What is the effect of education on the probability of owning a home $\{2$ marks $\}$
(g) Should the variable education be dropped from the model $\{2$ marks $\}$

