

Strathmore

STRATHMORE INSTITUTE OF MATHEMATICAL SCIENCES MASTER OF SCIENCE IN STATISTICAL SCIENCES END OF SEMESTER EXAMINATION STA 8205: COMPUTATIONAL STATISTICS

Date: 5th May 2023

TIME: 3 Hours

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

QUESTION 1 (30 Marks)

- a. Briefly define the following terms (6 marks)
 - a. Random Numbers.
 - b. Simulation.
 - c. Jacknief.
- b. Given the following numbers, generate 3 random numbers (2 marks)

$$X_0 = 27, a = 7, c = 43, m = 100$$

c. 1000 random numbers were obtained using Linear congruential generators are shown in the table below.

Cell	Observed
1	100
2	96
3	98
4	85
5	105
6	93
7	97
8	125
9	107
10	94

Using the Chi-square test at 0.1 significant level, perform the appropriate test for these random numbers (7 marks)

- d. Using Poi(2) distribution, simulate two random values given the following random numbers: 0.721 and 0.128 from U(0,1). (5 marks)
- e. Suppose you want to find the integral of the following function:

$$\int_{-2}^{5} -x^3 + 6x^2 - x + 17dx$$

Describing the Monte Carlo integration, and using any 3 values for x, obtain the value of the integral. (7 marks)

f. Name any three random number generators (3 marks)

Question Two (15 Marks)

- a. Outline the acceptance rejection method of sampling, hence or otherwise describe how you would draw $X \sim N(\mu, \sigma^2)$ (9 marks).
- b. Assume that you have the following data set: $X_1, ..., X_n$. Let M_n be the median. Discussing what is bootstrapping, outline how you would obtain the bootstrap estimate of the variance, MSE and confidence interval of M_n (6 marks).

Question Three (15 Marks)

- a. Suppose you have the following N =5 numbers: 0.44, 0.81, 0.14, 0.05, 0.93. Compare the CDF, F(X) of the uniform distribution, with that of the empirical CDF $S_0(x)$, of the N sample observations using the Kolmogorov-Smirnov test (10 marks)
- b. Briefly explain the expectation maximization algorithm (5 marks)

Question Four (15 Marks)

a. Variance reduction a is done in such a way that one can reach the same precision with lower numbers of draws or equivalently, a higher precision with the same number of draws.

Using the following integral as an example,

$$I = \int_0^1 e^x dx$$

and the following 3 draws from U(0,1): 0.44, 0.81, 0.14, discuss two variance reduction methods (15 marks)

Question Five (15 Marks)

- a. Describe the Markov Chain Monte Carlo sampling technique (10 marks).
- b. Simulate three random values from Exp(0.1) distribution using the random values: 0.113, 0.608 and 0.003: Hint: The pdf of exponential distribution is: $f(x) = \lambda e^{-\lambda x}, x > 0$ (5 marks).

Degrees of Freedom		12 - 1725-0	r ²	
(N)	D _{0.10}	D _{0.05}	D _{0.01}	
1	0.950	0.975	0.995	
2	0.776	0.842	0.929	
3	0.642	0.708	0.828	
4	0.564	0.624	0.733	
5	0.510	0.565	0.669	
6	0.470	0.521	0.618 0.577	
7	0.438	0.486		
8	0.411	0.457	0.543	
9	0.388	0.432	0.514	
10	0.368	0.410	0.490	
11	0.352	0.391	0.468	
12	0.338	0.375	0.450	
13	0.325	0.361	0.433	
14	0.314	0.349	0.418	
15	0.304	0.338	0.404	
16	0.295	0.328	0.392	
17	0.286	0.318	0.381	
18	0.278	0.309	0.371	
19	0.272	0.301	0.363	
20	0.264	0.294	0.356	
25	0.24	0.27	0.32	
30	0.22	0.24	0.29	
35	0.21	0.23	.0.27	
Over	1.22	1.36	1.63	
35	\sqrt{N}	\sqrt{N}	\sqrt{N}	

Kolmogorov-Smirnov Critical Values

d.f.	.995	.99	.975	.95	.9	.1	.05	.025	.01
1	0.00	0.00	0.00	0.00	0.02	2.71	3.84	5.02	6.63
2	0.01	0.02	0.05	0.10	0.21	4.61	5.99	7.38	9.21
3	0.07	0.11	0.22	0.35	0.58	6.25	7.81	9.35	11.34
4	0.21	0.30	0.48	0.71	1.06	7.78	9.49	11.14	13.28
5	0.41	0.55	0.83	1.15	1.61	9.24	11.07	12.83	15.09
6	0.68	0.87	1.24	1.64	2.20	10.64	12.59	14.45	16.81
7	0.99	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09
9	1.73	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67
10	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21
11	2.60	3.05	3.82	4.57	5.58	17.28	19.68	21.92	24.72
12	3.07	3.57	4.40	5.23	6.30	18.55	21.03	23.34	26.22
13	3.57	4.11	5.01	5.89	7.04	19.81	22.36	24.74	27.69
14	4.07	4.66	5.63	6.57	7.79	21.06	23.68	26.12	29.14
15	4.60	5.23	6.26	7.26	8.55	22.31	25.00	27.49	30.58
16	5.14	5.81	6.91	7.96	9.31	23.54	26.30	28.85	32.00
17	5.70	6.41	7.56	8.67	10.09	24.77	27.59	30.19	33.41
18	6.26	7.01	8.23	9.39	10.86	25.99	28.87	31.53	34.81
19	6.84	7.63	8.91	10.12	11.65	27.20	30.14	32.85	36.19

Chi-square Distribution Table