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Abstract—The subject of this paper is computer worm 

detection in a network. Computers worms have been defined as a 

process that can cause a possibly evolved copy of it to execute on 

a remote computer. They do not require human intervention to 

propagate; neither do they need to attach themselves to existing 

files. Computer worms spread very rapidly and modern worm 

authors obfuscate their code to make it difficult to detect them. 

This paper proposes to use machine learning to detect them. The 

paper deviates from existing approaches in that it uses the 

darkspace network traffic attributed to an actual worm attack to 

validate the algorithms. In addition, it attempts to understand the  

threat model, the feature set and the detection algorithms to 

explain the best combination of features and why the  best 

algorithms succeeds where others have failed. 

Keywords—computer worm detection, malware detection, 

machine learning, darkspace network traffic, behavioral computer 

worm detection 

I.  INTRODUCTION 

Malicious code includes computer virus, Trojan horse, spy-

ware, ad-ware, computer worms among others. This present 

research limits itself to computer worms and specifically 

computer worm detection in a network. Reference [1] defines 

a computer worm as “a process that can cause a (possibly 

evolved) copy of it to execute on a remote computational 

machine.” 

Several different computer worm detection approaches have 

been explored in the research environment. Some of these 

works involve static analysis of malicious code where 

malware is analyzed without executing it while others involve 

dynamic analysis where the behavior of malware is analyzed 

as it interacts with the system. Also, some of the approaches 

are content payload based while others are behavior based. 

Among the problems with the existing approaches are the 

high false positive and high false negatives. Reference [2] 

explains that this could partly be because of the existing 

approaches relying on only one parameter for detection. 

Automated detection approaches are to be encouraged since 

computer worm spread is always rapid as explained in [3]. In 

addition, modern day worms are especially difficult to detect 

because worm authors employ complex mutations to evade 

detection and use code obfuscation techniques such as 

polymorphism and metamorphism [4 & 5]. 

Reference [6] explains that most research efforts in using 

machine learning for computer worm detection are directed 

towards removing the redundancy and noise from the data 

collected, performing efficient training for the classifier by 

using real variants of worms and identifying the most 

optimum classifier among the data mining classification 

algorithms. It uses anomalies with DNS requests and 

responses as the discriminating feature. 

We argue that high detection accuracy and confidence can 

be achieved by better characterization of computer worms 

using multi parameters. In addition, machine learning 

classifiers learning from past empirical evidence of computer 

worm attacks can be used for future prediction and 

classification of unseen instances.   

The dataset used for machine learning training and testing 

in this work is attributed to actual worm attack and therefore 

suitable to deliver useful research validity.   

This work attempts to follow the advice presented in [7].  

It makes the following contributions: 

First, the research explains the threat model, the network 

environment where the detection is to happen and the 

implication of false negatives. 

Secondly, the research investigates the relevance of the 

feature set used for the detection and explains their 



significance. The features are ranked to explain their 

contribution to the detection.  

Third, the research investigates the classification capability 

of different machine learning algorithms on the dataset. It 

attempts to explain why various algorithms succeed in some 

cases and why they fail in some cases. The research identifies 

the best performing algorithm on this dataset and tries to 

explain why it outperforms the others based on the feature set. 

The rest of the paper is organized as follows. Section II 

reviews existing literature on computer worm detection using 

machine learning. Section III discusses the methodology for 

the research starting with a review of the dataset used and the 

machine learning algorithms used. It then explores the dataset 

and the features in that dataset and discusses the experiments 

together with the tuning parameters. Section IV then discusses 

the Results and the paper concludes in section V. 

II. RELATED WORK 

Reference [8] builds behavior graphs from IP addresses, 

port numbers, protocol and dependencies between network 

activities. Features are then extracted from these behavior 

graphs to be used for detection. 

Among the features used for detection in approaches that 

use machine learning include portable PE header, API 

function calls [9], op-code sequences [10], system calls [11], 

TCP/IP packet header fields  [12 & 13] and n-grams [14]. 

Common machine learning algorithms employed include 

ensemble models such as voting or cascading schemes [15], 

Perceptron algorithm to combine existing features, Restricted 

Boltzmann method for creating features for an increased 

detection rate [15 & 16], Hidden Markov Models (HMM) [10 

& 11], structured multiclass SVM [17], Genetic Algorithms 

[12], Naive Bayes (NB) [14], OSC-3 [18], a combination of 

classifiers SVM, Rule Induction, kNN, NB, DT, ANN, 

Random Forest (RF) [15]. 

III. METHODOLOGY 

As indicated in the Introduction, the main aim of this work 

is to investigate various machine learners on computer worm 

detection using unidirectional network traffic to a dark space. 

The methodology adopted will therefore follow the standard 

procedure in machine learning: 1) collecting data, 2) exploring 

and preparing the data, 3) training a model on the data, 4) 

evaluating model performance and 5) improving model 

performance.  

Among the machine learning algorithms investigated 

included k Nearest Neighbors (kNN), Naïve Bayes (NB), 

Support Vector Machines (SVM), Neural Networks (NN) and 

Decision Trees (DT). Ensemble methods such as Random 

Forest (RF) will also be explored. 

A. Dataset 

The datasets used for the experiments were obtained from 
the University San Diego California Center for Applied Data 
Analysis (USCD CAIDA). The center operates a network 

telescope that consists of a globally rooted /8 network that 
monitors large segments lightly used address space. There is 
little legitimate traffic in this address space hence it provides a 
monitoring point for anomalous traffic that represents almost 
1/256th of all IPv4 destination addresses on the Internet. 

Two sets of datasets were requested and obtained from this 
telescope. The first is the Three days of Conficker Dataset [19] 
containing data for three days between November 2008 and 
January 2009 during which Conficker worm attack [20] was 
active. This dataset contains 68 compressed packet capture 
(pcap) files each containing one hour of traces. The pcap files 
only contain packet headers with the payload having been 
removed to preserve privacy. The destination IP addresses have 
also been masked for the same reason. The other dataset is the 
Two Days in November 2008 dataset [21] with traces for 12 
and 19 November 2008, containing two typical days of 
background radiation just prior to the detection of Conficker 
which has been used to differentiate between Conficker-
infected traffic and clean traffic. 

The datasets were processed using the CAIDA Corsaro 

software suite [22], a software suite for performing large-scale 

analysis of trace data. The raw pcap datasets were aggregated 

into the FlowTuple format. This format retains only selected 

fields from captured packets instead of the whole packet, 

enabling a more efficient data storage, processing, and 

analysis. The 8 fields are source IP address, destination IP 

address, source port, destination port, protocol, Time To Live 

(ttl), TCP flags, IP length. An additional field, value, indicates 

the number of packets in the interval whose header fields 

match this FlowTuple key. These features are further 

explained in section B below to motivate an understanding of 

their contribution towards the detection capability of the 

learning algorithms. 

The instances in the Three Days of Conficker dataset have 

been further filtered to retain only instances that have a high 

likelihood of being attributable to Conficker worm attack of 

the year 2008. Ref. [20] focuses on Conficker’s TCP scanning 

behavior (searching for victims to exploit) and indicates that it 

engages in three types of observable network scanning via 

TCP port 445 or 139 (where the vulnerable Microsoft software 

Windows Server Service runs) for additional victims. The 

vulnerability allowed attackers to execute arbitrary code via a 

crafted RPC request that triggers a buffer overflow.These are 

local network scanning where Conficker determines the 

broadcast domain from network interface settings, scans hosts 

nearby other infected hosts and random scanning. Other 

distinguishing characteristics of this worm included TTL 

within reasonable distance from Windows default TTL of 128, 

incremental source port, incremental source port in the 

Windows default range of 1024-5000, 2 or 1 TCP SYN 

packets per connection attempt instead of the usual 3 TCP 

SYN packets per connection attempt due to TCP’s retransmit 

behavior.  

This dataset solves the privacy challenge by removing the 

payload and also masking out the first octet of the destination 

IP address. It is also a more recent dataset than the KDD 



dataset that has been the one available for network security 

researchers. However, it only includes unidirectional traffic to 

the network telescope and therefore does not allow the 

researcher to include features of computer worms that would 

be available in bidirectional traffic and would help with a 

more complete training.  

B. Features 

This section presents an analysis of the features to be used 

for detection and their contribution towards the detection 

capability of the learning algorithms. 

Source IP address indicates the IP address of the originating 

host while Destination IP address indicates the recipient IP 

address. In the features to train the algorithms, the Destination 

IP address will be left out as it has been masked in the datasets 

and is therefore not useful in demarcating the classes. The 

source IP address can be used as a discriminating feature. 

Large variability in source IP address is unusual as hosts 

normally community with just a few hosts in normal 

communications. Particular geographical regions are also 

predisposed to more origin of computer worm attacks and this 

information can be obtained from the IP addresses. Reserved 

IP addresses, when seen as originating hosts are also 

suspicious. 

Reflexive source and destination ports (similar) are also 

suspicious and can contribute to discrimination between 

classes. In addition, many computer worms target particular 

services whose ports are well-known and common. This can 

be a discriminant feature. For example, the Ramen worm uses 

port 21 while the Conficker worm uses ports 139 and 145. 

Source ports within particular ranges may also be indicative of 

computer worm activity. 

Protocol indicates the next level protocol. ICMP is 1, TCP 

is 6 and UDP is 17. Worms can be classified based on the 

transport channel used. Even though this in itself cannot 

discriminate between classes, it can help limit the amount of 

traffic to deal with. 

Time To Live (TTL) is used to avoid looping in the network 

Every packet is sent with some TTL value set, which tells the 

network how many network routers (hops) this packet can 

cross. At each hop, its value is decremented by one and when 

the value reaches zero, the packet is discarded. Different 

operating systems have default TTL ranges and since 

computer worms target vulnerabilities in particular operating 

systems, they will usually be associated with TTL within 

certain ranges. 

Each TCP segment has a purpose and this is determined 

with the help of the TCP flag option. A value of 1 means that a 

particular flag is set. Flags occupy 6 bits. Each flag is 1 bit. 

The flags are URG, ACK, PSH, RST, SYN, and FIN [24] 

URG: Urgent Pointer to identify incoming segment as 

urgent. 

ACK: Acknowledgment used to acknowledge the 

successful receipt of packets.  

PSH: PUSH to ensure that the data is given priority. 

RESET: Used when a segment arrives that is not intended 

for the current connection, for example, if you were to send a 

packet to a host to establish a connection, and there was no 

such service waiting to answer at the remote host, then that 

host would automatically reject your request and then send 

you a reply with the RST flag set. 

Packet length indicates the size of the packet. Particular 

computer worms are associated with particular packet length 

sizes. For example, the packet length for Conficker worm is 

around 62 bytes. 

C. Machine Learning Algorithms 

Various Machine Learning Algorithms were explored and 
their detection capabilities identified. There was an attempt to 
explain why they were successful in some cases and failed in 
others. The algorithms explored were the ones that have been 
commonly seen in the literature. These included k-Nearest 
Neighbors (kNN), Naïve Bayes (NB), Support Vector 
Machines (SVM), Decision Trees (DT), Artificial Neural 
Networks (ANN), and Random Forests (RF). The 
implementations of the algorithms used are as in the R 
programming language [16]. 

D. Experiments 

Some flow tuples from the Conficker worm dataset were 
randomly selected and mixed with the some flow tuples from 
the clean traffic after each having been appropriately annotated 
into worm traffic and benign traffic. A random selection was 
then made to realize an eventual 1000 observables. 

20% of the data was thereafter held back from the modeling 
process as the validation dataset to be used at the end of the 
project to confirm the accuracy of the final model. The 
remaining 80% was the reserved data for training and testing. 

The variables were all numeric apart from the class variable 
which was nominal with 2 levels. A peek at the variables 
indicated that normalization of attributes would be necessary as 
the ranges varied greatly. Table 1 shows the frequencies and 
percentages of the composition of the training and testing 
dataset. 

TABLE I.  COMPOSITION OF TRAINING AND TESTING DATASETS 

 Frequency Percentage 

Worm 480 59.92509 

Not 

Worm 
321 40.07491 

 

Some modest correlation between IP packet length and 

protocol attributes was noticed at 0.78. Some learning 

algorithms would therefore benefit from removing the highly 

correlated attributes. 

To further understand the data, visualizations were carried 

out using the R programming language [25]. 

For data pre-processing, data transforms were carried out to 

normalize the data. Observations with null values were 

weeded out and outliers also filtered out. A number of 



transform functions were carried out, subjecting each to model 

training and prediction to be able to determine the best 

transform function for various learning algorithms. 

For model training, various classifiers were explored. Since 

there was a good amount of data, 10-fold cross validation with 

3 repeats was used. This is a good standard test harness 

configuration for binary classification problems. Accuracy and 

Kappa metrics were used as the model evaluation metrics. 

The models were created initially using default parameters. 

Algorithm tuning was performed thereafter. The random 

number seed was set before training each algorithm to ensure 

each algorithm was evaluated on exactly the same splits of 

data. This would make later comparisons simpler. 

Skewed distributions were thereafter adjusted using 

transform methods, starting with the box-cox transform. 

The features were ranked in importance using R. 

IV. RESULTS AND DISCUSSION 

A. Features 

When the features were ranked, it was found out that they 

were in the order value, source IP address, Time To Live, IP 

Length, TCP flags, protocol, source port and lastly destination 

port as shown in Table II. It is evident that the three most 

useful features for the classification were value, source IP 

address and TTL. Destination Port provided the least 

classification ability.  

TABLE II.  FEATURE RANKING 

 Importance 

Value 0.7497 

Src_ip 0.6163 

TTL 0.5425 

IP 

length 
0.4967 

Src 
port 

0.3310 

Dst 

port 
0.1856 

Figure I shows the ranking graphically. The feature value 

seems to most discriminating because it indicates the repletion 

of a particular tuple key. A number of flow tuples with a 

particular key would be suspicious. Also, the source IP 

addresses seems to be discriminative. It was our explanation 

that this could be because computer worm attacks origin seem 

to be localized to certain geographical regions. Time to Live is 

also ranked high. This may be because of the default Time to 

Live values for the attacked operating systems. 

 

The metrics utilized for algorithm evaluation were 

Accuracy and Kappa metrics.  The kappa statistic adjusts 

accuracy by accounting for the possibility of correct prediction 

by chance alone. Kappa values range to a maximum value of 

1, which indicates perfect agreement between the model’s 

predictions and the true values – a rare occurrence. It can be 

seen from the table that the kappa values show a very good 

agreement (values greater than 0.80). C5.0 decision tree 

algorithm again provides the highest kappa value at 0.9102. 

The algorithms performed as is depicted in Table III. 

TABLE III.  ALGORITHM PERFORMANCE (MEAN) 

 Accuracy Kappa 

kNN 0.9289 0.8473 

NB 0.8690             0.7141 

C5.0 0.9575 0.9102 

SVM 0.9325 0.8552 

CART 0.9401 0.8730 

 

 
Figure I show a plot of the algorithm performance in terms 

of accuracy and kappa. It can be seen that the C5.0 decision 
tree algorithm performed the best with an accuracy of 0.9575. 
It was therefore chosen as the best model and further tuned and 
utilized for prediction. The ConfusionMatrix for this algorithm 
is as shown in Table IV. A confusion matrix is a table that 
categorizes predictions according to whether they match the 
actual value in the data. The sensitivity of the model is 0.9916. 
Sensitivity measures the proportion of positive examples that 
were correctly classified. Over 99 percent of the positive class 
(worm) was correctly classified. The specificity of the model or 
the proportion of negative examples that were correctly 
classified is however at 0.8375. While this is still high, there is 
room for improvement. It indicates that almost 2 out of every 
10 instances that are benign are wrongly classified as 
malicious. 

TABLE IV.  CONFUSION MATRIX 

  

Sensitivity 0.9916 

Specificity 0.8375 

 

 

V. CONCLUSION AND FUTURE WORK 

The aim of the paper was to investigate the detective 

capability of machine learning algorithms in detecting 

computer worms in networks. The dataset used for the training 

and testing and eventual validation of the algorithms was the 

UCSD CAIDA network telescope darkspace traffic. Various 

machine learning algorithms were investigated such as Naïve 

Bayes, k Nearest Neighbors, Support Vector Machines, 

Decision Trees, etc. The implementations for these algorithms 

were those available in packages available to the R 

programming language. C5.0 decision tree algorithm emerged 

the best in terms of accuracy and confidence. The features that 

were useful for the detection capabilities were also 

determined.  In future, the authors will investigate how to 

improve the detection using ensemble algorithms and even a 



better understanding of the feature set from the same dataset. 
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Fig. 1. Algorithms performance using the accuracy and kappa metrics 


