
Detecting Scanning Computer Worms Using Machine

Learning and Darkspace Network Traffic

Nelson Ochieng

Faculty of Information Technology

Strathmore University

Nairobi, Kenya

nochieng@strathmore.edu

Ismail Ateya

Faculty of Information Technology

Strathmore University

Nairobi, Kenya

iateya@strathmore.edu

Waweru Mwangi

Faculty of Information Technology

JKUAT

Nairobi, Kenya

wmwangi@icsit.jkuat.ac.ke

Joseph Orero

Faculty of Information Technology

Strathmore University

Nairobi, Kenya

jorero@strathmore.edu

Abstract—The subject of this paper is computer worm

detection in a network. Computers worms have been defined as a

process that can cause a possibly evolved copy of it to execute on

a remote computer. They do not require human intervention to

propagate; neither do they need to attach themselves to existing

files. Computer worms spread very rapidly and modern worm

authors obfuscate their code to make it difficult to detect them.

This paper proposes to use machine learning to detect them. The

paper deviates from existing approaches in that it uses the

darkspace network traffic attributed to an actual worm attack to

validate the algorithms. In addition, it attempts to understand the

threat model, the feature set and the detection algorithms to

explain the best combination of features and why the best

algorithms succeeds where others have failed.

Keywords—computer worm detection, malware detection,

machine learning, darkspace network traffic, behavioral computer

worm detection

I. INTRODUCTION

Malicious code includes computer virus, Trojan horse, spy-

ware, ad-ware, computer worms among others. This present

research limits itself to computer worms and specifically

computer worm detection in a network. Reference [1] defines

a computer worm as “a process that can cause a (possibly

evolved) copy of it to execute on a remote computational

machine.”

Several different computer worm detection approaches have

been explored in the research environment. Some of these

works involve static analysis of malicious code where

malware is analyzed without executing it while others involve

dynamic analysis where the behavior of malware is analyzed

as it interacts with the system. Also, some of the approaches

are content payload based while others are behavior based.

Among the problems with the existing approaches are the

high false positive and high false negatives. Reference [2]

explains that this could partly be because of the existing

approaches relying on only one parameter for detection.

Automated detection approaches are to be encouraged since

computer worm spread is always rapid as explained in [3]. In

addition, modern day worms are especially difficult to detect

because worm authors employ complex mutations to evade

detection and use code obfuscation techniques such as

polymorphism and metamorphism [4 & 5].

Reference [6] explains that most research efforts in using

machine learning for computer worm detection are directed

towards removing the redundancy and noise from the data

collected, performing efficient training for the classifier by

using real variants of worms and identifying the most

optimum classifier among the data mining classification

algorithms. It uses anomalies with DNS requests and

responses as the discriminating feature.

We argue that high detection accuracy and confidence can

be achieved by better characterization of computer worms

using multi parameters. In addition, machine learning

classifiers learning from past empirical evidence of computer

worm attacks can be used for future prediction and

classification of unseen instances.

The dataset used for machine learning training and testing

in this work is attributed to actual worm attack and therefore

suitable to deliver useful research validity.

This work attempts to follow the advice presented in [7].

It makes the following contributions:

First, the research explains the threat model, the network

environment where the detection is to happen and the

implication of false negatives.

Secondly, the research investigates the relevance of the

feature set used for the detection and explains their

significance. The features are ranked to explain their

contribution to the detection.

Third, the research investigates the classification capability

of different machine learning algorithms on the dataset. It

attempts to explain why various algorithms succeed in some

cases and why they fail in some cases. The research identifies

the best performing algorithm on this dataset and tries to

explain why it outperforms the others based on the feature set.

The rest of the paper is organized as follows. Section II

reviews existing literature on computer worm detection using

machine learning. Section III discusses the methodology for

the research starting with a review of the dataset used and the

machine learning algorithms used. It then explores the dataset

and the features in that dataset and discusses the experiments

together with the tuning parameters. Section IV then discusses

the Results and the paper concludes in section V.

II. RELATED WORK

Reference [8] builds behavior graphs from IP addresses,

port numbers, protocol and dependencies between network

activities. Features are then extracted from these behavior

graphs to be used for detection.

Among the features used for detection in approaches that

use machine learning include portable PE header, API

function calls [9], op-code sequences [10], system calls [11],

TCP/IP packet header fields [12 & 13] and n-grams [14].

Common machine learning algorithms employed include

ensemble models such as voting or cascading schemes [15],

Perceptron algorithm to combine existing features, Restricted

Boltzmann method for creating features for an increased

detection rate [15 & 16], Hidden Markov Models (HMM) [10

& 11], structured multiclass SVM [17], Genetic Algorithms

[12], Naive Bayes (NB) [14], OSC-3 [18], a combination of

classifiers SVM, Rule Induction, kNN, NB, DT, ANN,

Random Forest (RF) [15].

III. METHODOLOGY

As indicated in the Introduction, the main aim of this work

is to investigate various machine learners on computer worm

detection using unidirectional network traffic to a dark space.

The methodology adopted will therefore follow the standard

procedure in machine learning: 1) collecting data, 2) exploring

and preparing the data, 3) training a model on the data, 4)

evaluating model performance and 5) improving model

performance.

Among the machine learning algorithms investigated

included k Nearest Neighbors (kNN), Naïve Bayes (NB),

Support Vector Machines (SVM), Neural Networks (NN) and

Decision Trees (DT). Ensemble methods such as Random

Forest (RF) will also be explored.

A. Dataset

The datasets used for the experiments were obtained from
the University San Diego California Center for Applied Data
Analysis (USCD CAIDA). The center operates a network

telescope that consists of a globally rooted /8 network that
monitors large segments lightly used address space. There is
little legitimate traffic in this address space hence it provides a
monitoring point for anomalous traffic that represents almost
1/256th of all IPv4 destination addresses on the Internet.

Two sets of datasets were requested and obtained from this
telescope. The first is the Three days of Conficker Dataset [19]
containing data for three days between November 2008 and
January 2009 during which Conficker worm attack [20] was
active. This dataset contains 68 compressed packet capture
(pcap) files each containing one hour of traces. The pcap files
only contain packet headers with the payload having been
removed to preserve privacy. The destination IP addresses have
also been masked for the same reason. The other dataset is the
Two Days in November 2008 dataset [21] with traces for 12
and 19 November 2008, containing two typical days of
background radiation just prior to the detection of Conficker
which has been used to differentiate between Conficker-
infected traffic and clean traffic.

The datasets were processed using the CAIDA Corsaro

software suite [22], a software suite for performing large-scale

analysis of trace data. The raw pcap datasets were aggregated

into the FlowTuple format. This format retains only selected

fields from captured packets instead of the whole packet,

enabling a more efficient data storage, processing, and

analysis. The 8 fields are source IP address, destination IP

address, source port, destination port, protocol, Time To Live

(ttl), TCP flags, IP length. An additional field, value, indicates

the number of packets in the interval whose header fields

match this FlowTuple key. These features are further

explained in section B below to motivate an understanding of

their contribution towards the detection capability of the

learning algorithms.

The instances in the Three Days of Conficker dataset have

been further filtered to retain only instances that have a high

likelihood of being attributable to Conficker worm attack of

the year 2008. Ref. [20] focuses on Conficker’s TCP scanning

behavior (searching for victims to exploit) and indicates that it

engages in three types of observable network scanning via

TCP port 445 or 139 (where the vulnerable Microsoft software

Windows Server Service runs) for additional victims. The

vulnerability allowed attackers to execute arbitrary code via a

crafted RPC request that triggers a buffer overflow.These are

local network scanning where Conficker determines the

broadcast domain from network interface settings, scans hosts

nearby other infected hosts and random scanning. Other

distinguishing characteristics of this worm included TTL

within reasonable distance from Windows default TTL of 128,

incremental source port, incremental source port in the

Windows default range of 1024-5000, 2 or 1 TCP SYN

packets per connection attempt instead of the usual 3 TCP

SYN packets per connection attempt due to TCP’s retransmit

behavior.

This dataset solves the privacy challenge by removing the

payload and also masking out the first octet of the destination

IP address. It is also a more recent dataset than the KDD

dataset that has been the one available for network security

researchers. However, it only includes unidirectional traffic to

the network telescope and therefore does not allow the

researcher to include features of computer worms that would

be available in bidirectional traffic and would help with a

more complete training.

B. Features

This section presents an analysis of the features to be used

for detection and their contribution towards the detection

capability of the learning algorithms.

Source IP address indicates the IP address of the originating

host while Destination IP address indicates the recipient IP

address. In the features to train the algorithms, the Destination

IP address will be left out as it has been masked in the datasets

and is therefore not useful in demarcating the classes. The

source IP address can be used as a discriminating feature.

Large variability in source IP address is unusual as hosts

normally community with just a few hosts in normal

communications. Particular geographical regions are also

predisposed to more origin of computer worm attacks and this

information can be obtained from the IP addresses. Reserved

IP addresses, when seen as originating hosts are also

suspicious.

Reflexive source and destination ports (similar) are also

suspicious and can contribute to discrimination between

classes. In addition, many computer worms target particular

services whose ports are well-known and common. This can

be a discriminant feature. For example, the Ramen worm uses

port 21 while the Conficker worm uses ports 139 and 145.

Source ports within particular ranges may also be indicative of

computer worm activity.

Protocol indicates the next level protocol. ICMP is 1, TCP

is 6 and UDP is 17. Worms can be classified based on the

transport channel used. Even though this in itself cannot

discriminate between classes, it can help limit the amount of

traffic to deal with.

Time To Live (TTL) is used to avoid looping in the network

Every packet is sent with some TTL value set, which tells the

network how many network routers (hops) this packet can

cross. At each hop, its value is decremented by one and when

the value reaches zero, the packet is discarded. Different

operating systems have default TTL ranges and since

computer worms target vulnerabilities in particular operating

systems, they will usually be associated with TTL within

certain ranges.

Each TCP segment has a purpose and this is determined

with the help of the TCP flag option. A value of 1 means that a

particular flag is set. Flags occupy 6 bits. Each flag is 1 bit.

The flags are URG, ACK, PSH, RST, SYN, and FIN [24]

URG: Urgent Pointer to identify incoming segment as

urgent.

ACK: Acknowledgment used to acknowledge the

successful receipt of packets.

PSH: PUSH to ensure that the data is given priority.

RESET: Used when a segment arrives that is not intended

for the current connection, for example, if you were to send a

packet to a host to establish a connection, and there was no

such service waiting to answer at the remote host, then that

host would automatically reject your request and then send

you a reply with the RST flag set.

Packet length indicates the size of the packet. Particular

computer worms are associated with particular packet length

sizes. For example, the packet length for Conficker worm is

around 62 bytes.

C. Machine Learning Algorithms

Various Machine Learning Algorithms were explored and
their detection capabilities identified. There was an attempt to
explain why they were successful in some cases and failed in
others. The algorithms explored were the ones that have been
commonly seen in the literature. These included k-Nearest
Neighbors (kNN), Naïve Bayes (NB), Support Vector
Machines (SVM), Decision Trees (DT), Artificial Neural
Networks (ANN), and Random Forests (RF). The
implementations of the algorithms used are as in the R
programming language [16].

D. Experiments

Some flow tuples from the Conficker worm dataset were
randomly selected and mixed with the some flow tuples from
the clean traffic after each having been appropriately annotated
into worm traffic and benign traffic. A random selection was
then made to realize an eventual 1000 observables.

20% of the data was thereafter held back from the modeling
process as the validation dataset to be used at the end of the
project to confirm the accuracy of the final model. The
remaining 80% was the reserved data for training and testing.

The variables were all numeric apart from the class variable
which was nominal with 2 levels. A peek at the variables
indicated that normalization of attributes would be necessary as
the ranges varied greatly. Table 1 shows the frequencies and
percentages of the composition of the training and testing
dataset.

TABLE I. COMPOSITION OF TRAINING AND TESTING DATASETS

 Frequency Percentage

Worm 480 59.92509

Not

Worm
321 40.07491

Some modest correlation between IP packet length and

protocol attributes was noticed at 0.78. Some learning

algorithms would therefore benefit from removing the highly

correlated attributes.

To further understand the data, visualizations were carried

out using the R programming language [25].

For data pre-processing, data transforms were carried out to

normalize the data. Observations with null values were

weeded out and outliers also filtered out. A number of

transform functions were carried out, subjecting each to model

training and prediction to be able to determine the best

transform function for various learning algorithms.

For model training, various classifiers were explored. Since

there was a good amount of data, 10-fold cross validation with

3 repeats was used. This is a good standard test harness

configuration for binary classification problems. Accuracy and

Kappa metrics were used as the model evaluation metrics.

The models were created initially using default parameters.

Algorithm tuning was performed thereafter. The random

number seed was set before training each algorithm to ensure

each algorithm was evaluated on exactly the same splits of

data. This would make later comparisons simpler.

Skewed distributions were thereafter adjusted using

transform methods, starting with the box-cox transform.

The features were ranked in importance using R.

IV. RESULTS AND DISCUSSION

A. Features

When the features were ranked, it was found out that they

were in the order value, source IP address, Time To Live, IP

Length, TCP flags, protocol, source port and lastly destination

port as shown in Table II. It is evident that the three most

useful features for the classification were value, source IP

address and TTL. Destination Port provided the least

classification ability.

TABLE II. FEATURE RANKING

 Importance

Value 0.7497

Src_ip 0.6163

TTL 0.5425

IP

length
0.4967

Src
port

0.3310

Dst

port
0.1856

Figure I shows the ranking graphically. The feature value

seems to most discriminating because it indicates the repletion

of a particular tuple key. A number of flow tuples with a

particular key would be suspicious. Also, the source IP

addresses seems to be discriminative. It was our explanation

that this could be because computer worm attacks origin seem

to be localized to certain geographical regions. Time to Live is

also ranked high. This may be because of the default Time to

Live values for the attacked operating systems.

The metrics utilized for algorithm evaluation were

Accuracy and Kappa metrics. The kappa statistic adjusts

accuracy by accounting for the possibility of correct prediction

by chance alone. Kappa values range to a maximum value of

1, which indicates perfect agreement between the model’s

predictions and the true values – a rare occurrence. It can be

seen from the table that the kappa values show a very good

agreement (values greater than 0.80). C5.0 decision tree

algorithm again provides the highest kappa value at 0.9102.

The algorithms performed as is depicted in Table III.

TABLE III. ALGORITHM PERFORMANCE (MEAN)

 Accuracy Kappa

kNN 0.9289 0.8473

NB 0.8690 0.7141

C5.0 0.9575 0.9102

SVM 0.9325 0.8552

CART 0.9401 0.8730

Figure I show a plot of the algorithm performance in terms

of accuracy and kappa. It can be seen that the C5.0 decision
tree algorithm performed the best with an accuracy of 0.9575.
It was therefore chosen as the best model and further tuned and
utilized for prediction. The ConfusionMatrix for this algorithm
is as shown in Table IV. A confusion matrix is a table that
categorizes predictions according to whether they match the
actual value in the data. The sensitivity of the model is 0.9916.
Sensitivity measures the proportion of positive examples that
were correctly classified. Over 99 percent of the positive class
(worm) was correctly classified. The specificity of the model or
the proportion of negative examples that were correctly
classified is however at 0.8375. While this is still high, there is
room for improvement. It indicates that almost 2 out of every
10 instances that are benign are wrongly classified as
malicious.

TABLE IV. CONFUSION MATRIX

Sensitivity 0.9916

Specificity 0.8375

V. CONCLUSION AND FUTURE WORK

The aim of the paper was to investigate the detective

capability of machine learning algorithms in detecting

computer worms in networks. The dataset used for the training

and testing and eventual validation of the algorithms was the

UCSD CAIDA network telescope darkspace traffic. Various

machine learning algorithms were investigated such as Naïve

Bayes, k Nearest Neighbors, Support Vector Machines,

Decision Trees, etc. The implementations for these algorithms

were those available in packages available to the R

programming language. C5.0 decision tree algorithm emerged

the best in terms of accuracy and confidence. The features that

were useful for the detection capabilities were also

determined. In future, the authors will investigate how to

improve the detection using ensemble algorithms and even a

better understanding of the feature set from the same dataset.

REFERENCES

[1] N. Weaver , V. Paxson , S. Staniford , R. Cunningham, A taxonomy of

computer worms, Proceedings of the 2003 ACM workshop on Rapid
malcode, October 27-27, 2003, Washington, DC, USA
[doi>10.1145/948187.948190]

[2] N. Ochieng, W. Mwangi, I. Ateya, A tour of the computer worm
detection space, Internation Journal of Computer Applications, vol. 104,
issue 1, pp. 29-33.

[3] S. Staniford, D. Moore, V. Paxson, N. Weaver, The top speed of flash
worms, WORM 04 2004.

[4] R. Kaur, M. Singh, A survey on zero-day polymorphic worm detection
techniques, IEEE Communications Surveys & tutorials, vol. 16. #3 3rd
quarter 2014.

[5] A. Dainotti, A.Pescape and K.Claffy, Issues and future directions in
traffic classification, IEEE Network, vol. 26, no. 1, pp. 35-40, January-
February 2012.

[6] B. Tawfeeq, H. Qeshta, Adaptive worm detection model based on multi
classifiers, Information and Communication Technology (PICICT),
2013 Palestinian International Conference on. IEEE, 2013.

[7] S. Robin, V. Paxson, Outside the closed world: On using machine
learning for network intrusion detection, Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 2010.

[8] Nari, Saeed, and Ali A. Ghorbani. "Automated malware classification
based on network behavior." Computing, Networking and
Communications (ICNC), 2013 International Conference on. IEEE,
2013.

[9] D. Vatamanu, C., Cosovan, D., Gavriluţ, D., & Luchian, H. (2015). A
Comparative Study of Malware Detection Techniques Using Machine
Learning Methods. World Academy of Science, Engineering and
Technology, International Journal of Computer, Electrical, Automation,
Control and Information Engineering, 9(5), 1157-1164.

[10] G. Narra, U., Di Troia, F., Corrado, V. A., Austin, T. H., & Stamp, M.
(2016). Clustering versus SVM for malware detection. Journal of
Computer Virology and Hacking Techniques, 12(4), 213-224.

[11] Imran, Mohammad, Muhammad Tanvir Afzal, and Muhammad Abdul
Qadir. "Similarity-based malware classification using hidden Markov
model." Cyber Security, Cyber Warfare, and Digital Forensic
(CyberSec), 2015 Fourth International Conference on. IEEE, 2015.

[12] Li, Wei. "Using genetic algorithm for network intrusion detection."
Proceedings of the United States Department of Energy Cyber Security
Group 1 (2004): 1-8.

[13] Shabtai, A., Moskovitch, R., Feher, C., Dolev, S., & Elovici, Y. (2012).
Detecting unknown malicious code by applying classification techniques
on opcode patterns. Security Informatics, 1(1), 1.

[14] Lai, Yingxu, and Zhenghui Liu. "Unknown malicious code detection
based on bayesian." Procedia Engineering 15 (2011): 3836-3842.

[15] Cimpoeşu, M., Gavriluţ, D., & Popescu, A. (2012). The proactivity of
perceptron derived algorithms in malware detection. Journal in
Computer Virology, 1-8.

[16] Benchea, R., & Gavriluţ, D. T. (2014, July). Combining restricted
boltzmann machine and one side perceptron for malware detection. In
International Conference on Conceptual Structures (pp. 93-103).
Springer International Publishing.

[17] Mulay, Snehal A., P. R. Devale, and G. V. Garje. "Intrusion detection
system using support vector machine and decision tree." International
Journal of Computer Applications 3.3 (2010): 40-43.

[18] Barat, Marius, Dumitru Bogdan Prelipcean, and Dragos Teodor
Gavrilut. "An Automatic Updating Perceptron-Based System for
Malware Detection." Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), 2013 15th International Symposium on. IEEE,
2013.

[19] The CAIDA UCSD Network Telescope "Three Days Of Conficker" - <
dates used >,

http://www.caida.org/data/passive/telescope-3days-
conficker_dataset.xml

[20] Emile Aben. Conficker/Conflicker/Downadup as seen from the UCSD
Network Telescope. Technical report, CAIDA, February 2009.
https://www.caida.org/research/security/ms08-067/conficker.xml

[21] The CAIDA UCSD Network Telescope "Two Days in November 2008"
Dataset - < dates used >,

http://www.caida.org/data/passive/telescope-2days-2008_dataset.xml

[22] http://www.caida.org/tools/measurement/corsaro

[23] Alistair King. Corsaro.
http://www.caida.org/tools/measurement/corsaro/, October 2012.

[24] https://tools.ietf.org/html/rfc793#page-15

[25] R Core Team (2013). R: A language and environment for statistical
computing.Jul 16, 2013

[26] Shubair Abdulla, Sureswaran Ramadass, Altyeb Altaher and Amer Al-
Nassir. Employing Machine Learning Algorithms to detect unknown
scanning and email worms. The International Arab Journal of
Information Technology, vol. 11, No. 2, March 2014.

http://www.caida.org/data/passive/telescope-2days-2008_dataset.xml
http://www.caida.org/tools/measurement/corsaro
https://tools.ietf.org/html/rfc793#page-15

Fig. 1. Algorithms performance using the accuracy and kappa metrics

