

#### Strathmore UNIVERSITY

#### STRATHMORE INSTITUTE OF MATHEMATICAL SCIENCES MASTER OF SCIENCE IN STATISTICAL SCIENCES END OF SEMESTER EXAMINATION STA 8203: PREDICTIVE MODELING AND STATISTICAL LEARNING

# DATE: December 17, 2021

Time: 2 Hours

### **Instructions**

- 1. This examination consists of **FOUR** questions.
- 2. Answer Question ONE (COMPULSORY) and any other TWO questions.

## **Question 1 (20 Marks)**

- a) Explain what EDA is.
  - i) Distinguish between EDA, classical and Bayesian analysis
  - ii) Enumerate the EDA assumptions

[6 Marks]

b) The Box-cox transform can be used to remove skewness in data. Describe this approach and also explain how maximum likelihood estimation can be used to estimate the transformation parameter  $\lambda$ .

[6 Marks]

- a) Suppose that the probability density function  $f(y,\theta)$  of a random variable *Y* belongs to the exponential dispersion family. Thus  $f(y;\theta,\phi) = exp\left[\frac{y\theta-b(\theta)}{a(\phi)}+c(y;\phi)\right]$ , where  $b(\cdot)$  and  $c(\cdot,\cdot)$  are known functions, and the range of Y does not depend on  $\theta$  or  $\phi$ . We also assume that the distribution is parameterized in terms of the mean of *Y*,  $\mu$  so that  $\theta \equiv g(\mu)$  for some function *g*, then  $g(\mu)$  is the canonical link. Show that:
  - i)  $E(Y) = b'(\theta)$
  - ii)  $Var(Y) = a(\phi)b''(\theta)$

[8 Marks]

## **Question 2 (20 Marks)**

- a) Consider the linear regression model  $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ , where  $\boldsymbol{\varepsilon} \sim MVN(\mathbf{0}, \sigma^2 \mathbf{I})$ .
  - i) Explain what the hat-matrix is.
  - ii) Explain how standardized residuals are used in regression diagnostics and use a mathematical approach to show that

$$Z = \frac{e_i}{s.e.(e_i)} = \frac{e_i}{\sqrt{\hat{\sigma}^2(1 - h_{ii})}} \sim N(0, 1)$$

iii) Explain how outliers, high-leverage values, and influential observations on the basis of the hat-matrix.

[12 Marks]

[8 Marks]

b) The Dixon and the generalized (extreme Studentized deviate) ESD (Rosner) tests are approaches used in exploratory data analysis. Distinguish between them and explain in (mathematical) detail how each approach works.

**Question 3 (20 Marks)** 

a) Given a random sample  $Y_1, ..., Y_n$  of size n from

$$f(y; \theta, \phi) = exp\left[\frac{y\theta - b(\theta)}{a(\phi)} + c(y; \phi)\right],$$

where  $b(\cdot)$  and  $c(\cdot, \cdot)$  are known functions, and the range of Y does not depend on  $\theta$  or  $\phi$ . Let  $\mathbf{X} = (X_1, \dots, X_k)'$  be a  $(k \times 1)$  vector of covariates with the systematic component as  $\eta = g(\mu_i) = \beta_1 X_{1i} + \dots + \beta_j X_{ji} \dots + \beta_k X_{ki}$ 

Show that the estimating equation can be expressed as:

$$\frac{\partial \ell}{\partial \beta_j} = \sum_{i=1}^n \frac{(y_i - \mu_i)}{V(\mu_i)} \times \frac{x_{ji}}{g'(\mu_i)} = 0,$$

where  $\ell$  is the log-likelihood function.

### [12 Marks]

b) Consider a data set of 144 observations of household cats. The data contains the cats' gender, body weight and height. The researcher would like to model and accurately predict the gender of a male cat based on previously observed values.

To verify and test our model's performance, they split the data into training (60%) and test sets (40%). Two models were entertained:

- Model 1: A logistic regression model with body weight as predictors
- Model 2: A logistic regression model with body weight and height as predictors The confusion matrices for these two models are also presented in

| Predicted status |        |      |               | Predicted status |      |  |
|------------------|--------|------|---------------|------------------|------|--|
| Actual status    | Female | Male | Actual status | Female           | Male |  |
| Female           | 12     | 10   | Female        | 9                | 15   |  |
| Male             | 13     | 22   | Male          | 13               | 20   |  |

- i) From the confusion matrices above, compare the 3 models. Compare your results based on model accuracy. [4 Marks]
- ii) For the best fitting model, compute the following measures: sensitivity, specificity and the false positive rate.

[4 Marks]

## Question 4 (20 Marks)

a) In statistical learning, distinguish between supervised and unsupervised learning. Give appropriate examples of methods that fall into each of these categories.

[5 Marks]

- b) The Validation set approach and Leave-One-Out cross-validation are resampling techniques implemented in predictive modeling. Describe each approach, enumerating its advantages and disadvantages.
- [8 marks]
  c) The variance-bias trade-off is an important consideration in predictive modeling. Explain why and derive an expression for the mean-square error of vector of parameters

[7 marks]