

STRATHMORE INSTITUTE OF MATHEMATICAL SCIENCES BSE 2205: INTERMEDIATE ECONOMETRICS SPECIAL EXAMS FOR BACHELOR OF BUSINESS SCIENCE: ACTUARIAL SCIENCE, FINANCIAL ECONOMICS AND FINANCIAL ENGINEERING

28th April,2022

Time: 2 hours

Instructions

- 1. This examination consists of **Five** questions.
- 2. Answer Question One(Compulsory) and any other two questions.

Question 1

- (a) Consider the model $Y = X\beta + U$
 - (i) State Y if its an $N \times 1$ matrix {3 marks}
 - (ii) State X if its an $N \times K$ matrix that provides for an intercept {3 marks}
 - (iii) State β if its an $K \times 1$ matrix of an intercept and slope coefficients {3 marks}
 - (iv) State U if its an $N \times 1$ matrix of residuals $\{2 \text{ marks}\}$
 - (v) State the system resulting from the above matrices in full {3 marks}
- (b) If U is the residual, derive $\hat{\beta}_{OLS}$ using matrix algebra {3 marks}
- (c) Show that $\hat{\beta}_{OLS}$ is unbiased {3 marks}
- (d) Derive the expression for $var(\hat{\beta}_{OLS})$ {3 marks}
- (e) If $Y = \begin{bmatrix} 1 & 2 & 0 & 3 & 2 \end{bmatrix}'$ and $x_2 = \begin{bmatrix} 1 & 2 & 2 & 1 & 2 \end{bmatrix}'$ find $\hat{\beta}_{OLS}$ using the expression derived in 1(b) above {3 marks}
- (f) If $\sigma^2 = 1$ find $var(\hat{\beta}_{OLS})$ using the expression in 1(d) above {2 marks}
- (g) What t-statistic is associated with the slope and intercept parameters given the estimates in 1(e) and 1(f) above? {2 marks}

[30 marks]

Question 2

Figure 1 shows the scatter and line of best fit for the regression model

Food expenditure_i = $\beta_1 + \beta_2$ Disposable income_i + ϵ_i

- (a) What does the distribution of food expenditures around the line of best fit suggest about the behaviour of the error term and the estimated model {2 marks}
- (b) What are the consequences of the behaviour of the error term stated in 2(a) above? $\{3 \text{ marks}\}$
- (c) Should one be worried about estimates of β_1 and β_2 ? {2 marks}
- (d) To simulate the solution to the problem identified in 2(a) above, Myra estimates the model $Y = \beta_1 + \beta_2 x_{2i} + \epsilon_i$ where $\epsilon_i = x_{2i} * U_i$ and $U_i \stackrel{iid}{\sim} N(0, 1)$. Show that Myra's model indeed simulates the problem identified in 2(a) above? {3 marks}
- (e) Suggest a transformation to Myra that would solve the problem with her model {2 marks}
- (f) If Myra's empirical information is $Y = \begin{bmatrix} 4 & 3 & -5 & -6 \end{bmatrix}'$ and $x_{2i} = \begin{bmatrix} 2 & 1 & -1 & -2 \end{bmatrix}'$. Estimate $\hat{\beta}_{OLS}$ {2 marks}
- (g) Now estimate the model with the empirical information given in section (f), but by GLS. {2 marks}

(h) Show that in this case $var(\hat{\beta}_{GLS}) = \begin{bmatrix} \frac{2}{5} & 0\\ 0 & \frac{1}{4} \end{bmatrix} \{2 \text{ marks}\}$

(i) Supply the robust standard errors that can be used to test the significance of β_1 and β_2 in 2(d) above {2 marks}

[20 marks]

Question 3

Consider the following data sampling process

$$Y_t = \beta x_t + \epsilon_t \text{ where}$$
$$\epsilon_t = 0.6\epsilon_{t-1} + U_t$$
$$U_t \stackrel{iid}{\sim} N(0, 1)$$

- (a) Assume that $\epsilon_t \sim N(\mu_{\epsilon}, \sigma_{\epsilon}^2)$ for every t. Show that $\mu_{\epsilon} = 0$ and $var(\epsilon_t) = \frac{25}{16} \{3 \text{ marks}\}$
- (b) Show that this model has autocorrelation. What does the error covariance matrix look like, given that n = 5? {4 marks}
- (c) Discuss how you would transform the data to remove the autocorrelation {5 marks}
- (d) You are given the following empirical information: $Y = \begin{bmatrix} 3 & 4 & 5 & -1 & 4 \end{bmatrix}'$ and $x = \begin{bmatrix} 5 & 5 & 10 & 0 & 10 \end{bmatrix}'$. Estimate $\hat{\beta}_{GLS}$ {5 marks}
- (e) What is the use of the estimates 3(d) above? $\{1 \text{ mark}\}$
- (f) State the formal test for autocorrelation together with its null and alternative hypothesis {2 marks}

[20 marks]

Question 4

Using a sample of 545 full-time workers, a researcher is interested in the question as to whether women are systematically underpaid compared with men. To answer this question the researcher estimates the model $\text{Wages}_i = \beta_1 + \beta_2 \text{Male}_i + \epsilon_i$ where the wages are measured in Kenya shillings per hour and Male_i is a dummy that sets to one for males and zero for females. Required:

- (a) The conditional expectation of Wages_i if $Male_i = 1$ and $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$ {3 marks}
- (b) The conditional expectation of Wages_i if Male_i = 0 and $\epsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$ {3 marks}
- (c) What is the interpretation of β_2 in this model given your findings in 1 b(i) and 1b(ii) $\{2 \text{ marks}\}$
- (d) The researcher estimates the model and obtains the results in Figure 2:

Figure 2: Hourly wages explained from gender: OLS results

Variable	Estimate	Standard error	<i>t</i> -ratio
constant	5.09	0.58	8.78
male	0.82	0.15	5.47
N = 545	$s = 2.17$ $R^2 = 0.26$		

use the findings in 4(a) through 4(c) above to interpret the intercept and the slope parameter $\{3 \text{ marks}\}$

(e) Some gender activist complain about the researchers ommission of the females in the model $Wages_i = \beta_1 + \beta_2 Male_i + \epsilon_i$. To calm the activists the researcher constructs a female dummy and attempts to include it in the model as follows:

$$Wages_i = \beta_1 + \beta_2 Male_i + \beta_3 Female_i + \epsilon_i \tag{1}$$

Required:

- (I) Specify the female dummy constructed by the researcher {2 marks}
- (II) What estimation issue(s) is this researcher likely to experience in estimating equation 1 {2 mark}
- (III) What are the causes of the issue(s) identified in 4e(II) above $\{2 \text{ marks}\}$
- (IV) What three ways could the researcher use to deal with the issue(s) in 4e(II) given the causes in 4e(III)? {3 marks}

[20 marks]

Question 5

Figure 3 shows the estimates for the regression model

Home $\text{Ownership}_i = \beta_1 + \beta_2 \text{income}_i + \beta_3 \text{level of education}_i + \epsilon_i$

Model		Probit	Logit	LPM
Goodness of fit	Log likelihood	-20.532	-20.460	-
	LR test chi(2)	13.99***	14.13***	-
	F(2, 37)			8.62***
	Pseudo R square	0.254	0.257	
	R square	-	-	0.3179
	Coefficient	0.195**	0.328**	0.067**
T	Z statistic	2.02	2.03	2.32
	P value	0.043	0.042	0.026
Income	Marginal effects	0.057**	0.055**	-
	Z statistic	2.39	2.54	-
	P value	0.017	0.011	-
	Coefficient	-0.023	-0.014	-0.012
	Z statistic	-0.07	-0.03	-0.11
Education	P value	0.946	0.980	0.913
	Marginal effects	-0.007	-0.002	-
	Z statistic	-0.07	-0.03	-
	P value	-0.946	0.980	-
	Constant	-2.557***	-4.407***	-0.373
Intercept	Z statistic	-3.20	-2.95	-1.60
	P value	0.001	0.003	0.118
Key	***significant at 1%			
ксу	**significant At 5%			

Figure 3: Influence of income and level of education on home ownership

- (a) Write the complete expressions for the probability density function (p.d.f.) and cumulative distribution function (c.d.f.) {3 marks}
- (b) What is the probability that a family owns a house i.e. $P\{y_i = 1 | x_i\}$ and the probability that a family does not own a house i.e. $P\{y_i = 0 | x_i\}$ {3 marks}

- (c) What are the shorting comings of the LPM model vis a vis the probit and logit model? {4 marks}
- (d) Interpret the LPM coefficient of for income (income was measured in thousand Kenya shillings){3 marks}
- (e) How does this coefficient compare with the marginal effects of the probit and logit model {3 marks}
- (f) What is the effect of education on the probability of owning a home $\{2 \text{ marks}\}$
- (g) Should the variable education be dropped from the model {2 marks}

[20 marks]

Be More be Strathmore! \bigcirc