
UAV heading controller Using Reinforcement learning

Stephen Kimathi,

Department of Electrical and Electronic Engineering

Dedan Kimathi University of Technology

Nyeri, Kenya

stephen.kimathi@dkut.ac.ke

Samuel Kang’ethe and Peter Kihato,

Department of Electrical and Electronic Engineering

Jomo Kenyatta University of Agriculture and Technology

Nairobi, Kenya

samuelkangethe7@gmail.com, kamitakhat1@gmail.com

Abstract - The control of heading of an Unmanned

Aerial Vehicle is a vital operation. It is accomplished

by employing a design of control algorithms that

control its flying direction. The available autopilots

exploit Proportional-Integral-Derivative (PID) based

heading controllers. Here we propose an adaptive

controller based on reinforcement learning. The

heading controller will be designed in

Matlab/Simulink for controlling a UAV in X-Plane

test platform. Through this platform, the performance

of the designed controller is compared with that of a

well tuned PID controller using real time simulations.

The results show that the proposed method performs

better.

Keywords - UAV, Reinforcement Learning, PID, X-

Plane

I. INTRODUCTION

UAVs have a broad range of applications that include

surveillance, search and rescue [1], target tracking, digital

mapping and weather observations. To accomplish these

autonomous missions, it is essential to have a reliable

heading control thus an autopilot system is an essential

component. UAVs can be remotely controlled, semi-

autonomous, autonomous or combining any of these.

They present the future of aerial vehicles and are of great

interest to the control engineering fraternity.

Due to the nonlinearity of the system dynamics and

parameter uncertainty in UAVs, several control

techniques including PID control [2], where two PID

controllers were used in tandem, for the lateral and

longitudinal motions. In [1] H ∞ control strategy was used.

Adaptive control strategies have been applied; fuzzy

systems in [3], active disturbance rejection control,

ADRC in [4]. In [5] an adaptive backstepping approach

was used to obtain directional control of a fixed wing

UAV, where the dynamics of the cross track error was

derived using the lateral system equations of motion.

In this paper an adaptive control strategy based on

reinforcement learning technique is presented. This is due

to the high nonlinearity of the system dynamics

associated with small flying aerial vehicles and lack of

complete knowledge of vehicle dynamics for parameter

estimation. Reinforcement learning explores actions from

available courses of action and chooses the best course of

action based on the reward it gets, hence suitable for this

kind of application.

This rest of this paper is organized as follows: Section II

presents the basics of UAV control, section III

introduces reinforcement learning principles, and gives a

brief overview of X-Plane test platform, section IV gives

the design of the controller and experimental setup,

section V provides the results and discussion and the

conclusion is given in the last section.

II. UAV BASICS

Fig. 1 shows that UAV has three principle axes of

motion (x,y,z) from its centre of gravity [6].

The position control of the UAV is converted to its

corresponding angular moments of rolling, pitching and

yawing motions. The control of the roll (φ), pitch (θ) and

yaw (Ψ) angles in a fixed wing UAV are aided by the

control surfaces such that

 Ailerons control the rolling

mailto:stephen.kimathi@dkut.ac.ke

Fig. 1: UAV axes of motion

 Elevator control the pitching

 Rudder control the yawing movement,

And the engines throttle to control the engines power.

The derivation of equations of motion for fixed wing

UAV are given in [7]. The lateral state space model

decoupled from within the linear model is then used with

inputs of aileron and rudder to control the heading of an

aircraft [8]. The decoupled lateral model state space

equation is given as

𝒙 = 𝑨𝒍𝒂𝒕𝒙𝒍𝒂𝒕 + 𝑩𝒍𝒂𝒕𝒖𝒍𝒂𝒕 (1)

Where 𝑥𝑙𝑎𝑡 is the decoupled lateral state space

model, 𝑢𝑙𝑎𝑡 the control input(s), 𝐴𝑙𝑎𝑡 is the state matrix

and 𝐵𝑙𝑎𝑡 the input matrix.

. The linear lateral state space model as given in [7] is

𝒑

𝜷

𝒓
𝝍

=

𝑳𝒑 𝑳𝜷 𝑳𝒓 𝟎

𝒀𝒑 𝒀𝜷 𝒀𝒓 − 𝟏 𝒎𝒈𝒄𝒐𝒔𝜽𝒆

𝑵𝒑 𝑵𝜷 𝑵𝒓 𝟎

𝟎 𝟎 𝟏 𝟎

𝒑
𝜷
𝒓
𝝓

 +

𝑳𝜹𝒂 𝑳𝜹𝒓

𝒀𝜹𝒂 𝒀𝜹𝒓

𝑵𝜹𝒂 𝑵𝜹𝒓

𝟎 𝟎

𝜹𝒂

𝜹𝒓
 (2)

where 𝜌 𝛽 𝑟 𝜑 𝑇 as the state variables. 𝜌 is the roll

rate, 𝛽 is the sideslip angle, 𝑟 is the yawing rate and 𝜑 is

the roll angle. The inputs consists of 𝛿𝑎 , the aileron

deflection and 𝛿𝑟 , the rudder deflection.

III. REINFORCEMENT LEARNING

Reinforcement learning, RL is learning what to do i.e.

how to map situations to actions, so as to maximize some

numerical reward. The learning agent is not told the

correct actions; instead it explores the possible actions

and remembers the reward it receives. The RL model

consists of a set of environment states 𝑠𝑡 ∈ 𝑆 ; a set of

actions 𝑎𝑡 ∈ 𝐴 that an agent can perform at each state,

and as a consequence of its action, the agent receives a

numerical reward 𝑟𝑡 . At each time step, an agent

implements a mapping from states to probabilities of

selecting each possible action. This mapping is called the

agent’s policy and denoted as 𝜋𝑡 which maximizes the

cumulative reward of an agent over time as [9]

𝑹 = 𝜸𝒕𝒓𝒕
∞
𝒕=𝟎 (3)

where 0 < 𝛾 < 1 is a discount factor, which discounts

the value of future rewards.

X-Plane

X-Plane is powerful flight simulator for personal

computers. It is not a game but rather an engineering tool

that can be used to predict the flying qualities of fixed and

rotary wing aircraft with considerable accuracy. The

accuracy of X-Plane makes it a useful tool to predict and

test the performance of an aircraft and its characteristics.

It has the capacity to send and receive data to and from

other devices. This is achieved using the User Datagram

Protocol, UDP [10].

IV. CONTROLLER DESIGN

The main control objective is to obtain lateral-directional

control in order to follow a desired reference heading.

Reinforcement learning, sarsa algorithm is used to design

the controller.

From the state space model presented above, the

associated Ricatti coefficient, P is calculated. This Ricatti

coefficient is used to calculate the

Cost function for each state-action pair using a simple

Lyapunov function

 𝑸 𝒔,𝒂 = 𝑿𝑻𝑃 X (4)

which was reformulated to include references as

𝑸(𝒔,𝒂) = 𝑿 − 𝒁 𝑻 𝑃 (𝑿 − 𝒁) (5)

where, X are states and Z are references.

A reward function is calculated as the deviation of the

target state from the desired state as in [11] which in this

work is taken as the heading error.

𝒓 𝒔 = −𝑪𝟏(∅ − ∅𝒓𝒆𝒇) (6)

The total value function is calculated, which is a sum of

previous state-action value function, the current reward

and the current state-action value function as

𝑄 𝑠1 ,𝑎1 ← 𝑄 𝑠1 ,𝑎1 + 𝛼 𝑟2 + 𝛾𝑄 𝑠2 ,𝑎2 − 𝑄 𝑠1 ,𝑎1

𝑸 𝒔𝟐,𝒂𝟐 ← 𝑸 𝒔𝟐,𝒂𝟐 + 𝜶 𝒓𝟑 + 𝜸𝑸 𝒔𝟑,𝒂𝟑 − 𝑸 𝒔𝟐,𝒂𝟐 (7)

⋮

This is updated as the total value function for the next

cycle of learning. According to [9], it is allowed to have a

one step gradient search of the value function;

exploitation for ease of real time implementation and less

computational burden. This was achieved as the temporal

difference which is evaluated as

𝜹𝒕 = 𝒓𝒕+𝟏 + 𝜸𝑸 𝒔𝒕+𝟏,𝒂𝒕+𝟏 − 𝑸 𝒔𝒕,𝒂𝒕 (8)

According to [12], an optimal control effort is given as

𝑢∗ = −KX but according to differential games

algorithm, this is expressed as

 𝒖∗ = −
𝟏

𝟐
 𝑹−𝟏𝒈𝑻𝛁𝑽∗ (9)

where ∇𝑉∗ is taken as the change in the optimal cost

function. In this work, the temporal difference between

successive cost functions is used as the reinforcement to

the optimal control.

The control signals from a feed forward neural network

are compared with this control signal. Then back

propagation algorithm updates the feedforward neural

network weights using back propagation. This means that

we are correcting the error in the control deflection in the

next control deflection through update of neural network

weights thus slowly taking our deflections to the best

available control effort in each consecutive cycle.

In this work the issue of exploration which is also central

to RL alongside exploitation is not addressed. Here the

RL controller only exploits the value function and new

states are found by inference of favorable value functions.

Implementation

The aerodynamic coefficients that constitute the values in

the mathematical model as provided for in [7] are taken

from [1] and [8] as 𝑚 = 1.9𝑘𝑔, 𝑏 = 1.2𝑚, 𝑔 = 9.8
𝑚

𝑠2 ,

𝑆 = 0.32 𝑚2, 𝑐 = 0.3 𝑚, 𝜌 =
1.225𝑘𝑔

𝑚3 ,
1

𝜋𝑒𝐴𝑅
= 0.0815

With the above parameters, the trim condition was

obtained as:

𝐴 =

−1.4000 0 0 9.4953
−30.9000 −12.8000 14.4000 0

1.4781 −0.4480 −6.080 0
0 1.0000 0 0

𝐵 =

0 0.7412
61.4000 12.4000
−3.6700 15.0000

0 0

Simulations were carried out in Matlab/Simulink. The

controller designed using the reinforcement learning

method described above was compared with a well tuned

PID controller. The two controllers were used for real

time UAV control in X-Plane using the schematic shown

in Fig. 6 below.

Fig. 6: Software-In-the-Loop Simulation

V. RESULTS AND DISCUSSION

The state space model given above was used to design the

controller in Matlab/Simulink as described in the

preceding section. Initially, a single step heading

reference was designed for an actual flight regime of 500

initial heading to 1000 final heading and the results were

as below. Fig. 9 shows the PID response to the step

reference. The rise time is 1.4007 seconds and the system

does not settle within the bounds of 0.5% of final value

that was specified. The percentage overshoot was

calculated to be 6.3119%., which is close to that reported

in [2] where a mathematical model was used.

Fig. 9: PID controller response to a step heading reference

The rise time is 1.2663 seconds as compared to PID’s

1.4007 seconds and the system settles after 21.371

seconds. The percentage overshoot is 3.1083% for the

RL controller which is lesser than the PID’s.

Fig. 10:RL controller response to a step heading

The next results are for another flight regime in X-Plane

where the UAV is commanded from an initial heading of

400. The aircraft is then commanded to go to 800 and

then 500 and so on. The Fig. 11 and Fig. 12 show the

results where the heading in degrees is plotted on the

vertical axis against time in seconds on the horizontal

axis.

From Fig. 12, in the first 10 seconds the response of the

RL controller is poor, as compared to that of the PID

controller in Fig. 11; this is due to the fact that the

artificial neural network weights are being continuously

adjusted where initially big adjustments are expected,

then the neural weights settle around the optimum

weights. It should be noted that the initial weights were

randomized. After 10 seconds the response stabilizes and

follows the reference more robustly than the PID

controller. It can also be seen that there is an overshoot on

the first step heading change but due to adaptation that

overshoot is eliminated in the consecutive step heading

angle changes as is evident from the Fig. 12.

Fig. 11: PID controller response in X-Plane

Due to the poor initial tracking response of the RL

controller, the data from Fig. 12 was used to train the

designed controller neural network weights using the

nonlinear autoregressive network with exogenous inputs,

NARX in Matlab. The neural network weights achieved

were set as initial weights in the designed RL controller

and the simulation was ran again. The response was as

Fig. 12: RL controller response in X-Plane

shown in Fig. 13. There were some improvements on the

initial tracking; there is less oscillations and overshoots

during the initial stages as compared to Fig. 12 where the

initial weights were randomly initialized.

Fig. 2:RL controller response after training

Conclusion

A reinforcement learning controller for heading control

in a fixed wing UAV has been presented. As it has been

shown using simulations in X-Plane, PID controller

performs well to tracking the reference initially from any

random position but its tracking response is poor, it

overshoots in every step reference heading change and

does not track the reference robustly. The RL controller

produced better tracking results and shows the usability

of this method.

References

[1] H. Ferreira et.al, "Disturbance Rejection in a Fixed
WIng UAV using nonlinear H-Infinty stste
feedback," in 9th International Conference on
Control and Automation, Santiago, USA, 2011.

[2] A. Mansoor et. al, "Heading control of a FIxed
wing UAV using Alternate control surfaces," IEEE,
vol. Vol. 2, December 2012.

[3] D. Stojcsics, "Fuzzy controller for small size
Unmanned Aerial Vehicles," in 10th IEEE Intl.
Symposium on Applied machine Intelligence and
Informatics, Herl'any, Slovakia, 2012, pp. 91- 95.

[4] L. Jing-Mei and Z. Ke, "Design of Active
Disturbance Rejection Controller for Autonomous
Aerial Refuelling UAV," in IEEE, 2013.

[5] A. Brezoescu et. al, "Adaptive Trajectory following
for a Fixed wing UAV in Presence of Crosswind,"
Journal of Intelligent Robotic Systems, vol. Vol. 69,
pp. 257-271, 2013.

[6] A. Noth et. al, "Dynamic Modelling of Fixed Wing
UAVs," Swiss Federal Institute of Technology,
Zurich, Laboratoty Report 2006.

[7] R. Beard and T. McLain, Small Unmanned Aircraft;
Theory and Practice, 1st ed. Princeton, New
Jersey: Princeton University Press, 2012.

[8] Y. Paw, "Synthesis and Validation of Flight Control
for UAV," University of Minnesota, Miinnesota,
PhD Thesis Dec. 2009.

[9] R. Sutton and A. Barto, Reinforcement Learning;
An Introduction, 1st ed. Massachusetts: MIT
press, 2005.

[10] R. Lucio and O. Neusa, "UAV Autopilot Controllers
Test Platform Using Matlab/Simulink and X-
Plane," in 40th ASEE/IEEE Frontiers in Education
Conference, Washington, Dc, 2010, pp. 6262-
6269.

[11] B. Haitham et. al, "Controller Design for
Quadrotor UAVs using Reinforcement Learning,"
in IEEE International Conference on Control
Applications, Yokohama, Japan, 2010, pp. 2130-
2135.

[12] B. Anderson and J. Moore, Optimal Control, Linear
quadratic Methods. London, UK: Prentice-Hall
International, 1989.

