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Abstract - The control of heading of an Unmanned 

Aerial Vehicle is a vital operation. It is accomplished 

by employing a design of control algorithms that 

control its flying direction. The available autopilots 

exploit Proportional-Integral-Derivative (PID) based 

heading controllers. Here we propose an adaptive 

controller based on reinforcement learning. The 

heading controller will be designed in 

Matlab/Simulink for controlling a UAV in X-Plane 

test platform. Through this platform, the performance 

of the designed controller is compared with that of a 

well tuned PID controller using real time simulations. 

The results show that the proposed method performs 

better. 

Keywords - UAV, Reinforcement Learning, PID, X-

Plane 

I. INTRODUCTION 

UAVs have a broad range of applications that include 

surveillance, search and rescue [1], target tracking, digital 

mapping and weather observations. To accomplish these 

autonomous missions, it is essential to have a reliable 

heading control thus an autopilot system is an essential 

component. UAVs can be remotely controlled, semi-

autonomous, autonomous or combining any of these. 

They present the future of aerial vehicles and are of great 

interest to the control engineering fraternity.  

Due to the nonlinearity of the system dynamics and 

parameter uncertainty in UAVs, several control 

techniques including PID control [2], where two PID 

controllers were used in tandem, for the lateral and 

longitudinal motions. In [1] H ∞ control strategy was used. 

Adaptive control strategies have been applied; fuzzy 

systems in [3], active disturbance rejection control,  

ADRC in [4]. In [5] an adaptive backstepping approach 

was used to obtain directional control of a fixed wing 

UAV, where the dynamics of the cross track error was 

derived using the lateral system equations of motion. 

In this paper an adaptive control strategy based on 

reinforcement learning technique is presented. This is due 

to the high nonlinearity of the system dynamics 

associated with small flying aerial vehicles and lack of 

complete knowledge of vehicle dynamics for parameter 

estimation. Reinforcement learning explores actions from 

available courses of action and chooses the best course of 

action based on the reward it gets, hence suitable for this 

kind of application.  

This rest of this paper is organized as follows: Section II 

presents the basics of UAV control, section III 

introduces reinforcement learning principles, and gives a 

brief overview of X-Plane test platform, section IV gives 

the design of the controller and experimental setup, 

section V provides the results and discussion and the 

conclusion is given in the last section. 

II. UAV BASICS 

Fig. 1 shows that UAV has three principle axes of 

motion (x,y,z) from its centre of gravity [6]. 

The position control of the UAV is converted to its 

corresponding angular moments of rolling, pitching and 

yawing motions. The control of the roll (φ), pitch (θ) and 

yaw (Ψ) angles in a fixed wing UAV are aided by the 

control surfaces such that 

 Ailerons control the rolling  
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Fig. 1: UAV axes of motion 

 Elevator control the pitching 

 Rudder control the yawing movement, 

And the engines throttle to control the engines power.  

The derivation of equations of motion for fixed wing 

UAV are given in [7]. The lateral state space model 

decoupled from within the linear model is then used with  

inputs of aileron and rudder to control the heading of an 

aircraft [8]. The decoupled lateral model state space 

equation is given as  

𝒙 =  𝑨𝒍𝒂𝒕𝒙𝒍𝒂𝒕 + 𝑩𝒍𝒂𝒕𝒖𝒍𝒂𝒕           ( 1 ) 

Where 𝑥𝑙𝑎𝑡  is the decoupled lateral state space 

model, 𝑢𝑙𝑎𝑡  the control input(s), 𝐴𝑙𝑎𝑡  is the state matrix 

and  𝐵𝑙𝑎𝑡  the input matrix.  

. The linear lateral state space model as given in [7] is 
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where  𝜌  𝛽   𝑟  𝜑  𝑇 as the state variables.  𝜌 is the roll 

rate, 𝛽 is the sideslip angle, 𝑟   is the yawing rate and  𝜑 is 

the roll angle. The inputs consists of  𝛿𝑎 , the aileron 

deflection and   𝛿𝑟 , the rudder deflection.  

 

III. REINFORCEMENT LEARNING 

Reinforcement learning, RL is learning what to do i.e. 

how to map situations to actions, so as to maximize some 

numerical reward. The learning agent is not told the 

correct actions; instead it explores the possible actions 

and remembers the reward it receives. The RL model 

consists of a set of environment states 𝑠𝑡  ∈ 𝑆 ; a set of 

actions 𝑎𝑡  ∈ 𝐴 that an agent can perform at each state, 

and as a consequence of its action, the agent receives a 

numerical reward 𝑟𝑡 . At each time step, an agent 

implements a mapping from states to probabilities of 

selecting each possible action. This mapping is called the 

agent’s policy and denoted as 𝜋𝑡   which maximizes the 

cumulative reward of an agent over time as [9] 

𝑹 =   𝜸𝒕𝒓𝒕
∞
𝒕=𝟎                                               ( 3 ) 

where 0 <  𝛾 < 1 is a discount factor, which discounts 

the value of future rewards. 

X-Plane 

X-Plane is powerful flight simulator for personal 

computers. It is not a game but rather an engineering tool 

that can be used to predict the flying qualities of fixed and 

rotary wing aircraft with considerable accuracy. The 

accuracy of X-Plane makes it a useful tool to predict and 

test the performance of an aircraft and its characteristics. 

It has the capacity to send and receive data to and from 

other devices. This is achieved using the User Datagram 

Protocol, UDP [10]. 

IV. CONTROLLER DESIGN 

The main control objective is to obtain lateral-directional 

control in order to follow a desired reference heading. 

Reinforcement learning, sarsa algorithm is used to design 

the controller. 

From the state space model presented above, the 

associated Ricatti coefficient, P is calculated. This Ricatti 

coefficient is used to calculate the 

Cost function for each state-action pair using a simple 

Lyapunov function 

                               𝑸 𝒔,𝒂 =  𝑿𝑻𝑃 X                   ( 4 ) 

which was reformulated to include references as 



𝑸(𝒔,𝒂) =  𝑿 − 𝒁 𝑻 𝑃 (𝑿 − 𝒁)   ( 5 ) 

where,  X are states and Z are references.  

A reward function is calculated as the deviation of the 

target state from the desired state as in [11] which in this 

work is taken as the heading error. 

𝒓 𝒔 =  −𝑪𝟏(∅ − ∅𝒓𝒆𝒇)   ( 6 ) 

The total value function is calculated, which is a sum of 

previous state-action value function, the current reward 

and the current state-action value function as   

𝑄 𝑠1 ,𝑎1 ←  𝑄 𝑠1 ,𝑎1 +  𝛼 𝑟2 +  𝛾𝑄 𝑠2 ,𝑎2 −  𝑄 𝑠1 ,𝑎1   

𝑸 𝒔𝟐,𝒂𝟐 ←  𝑸 𝒔𝟐,𝒂𝟐 +  𝜶 𝒓𝟑 +  𝜸𝑸 𝒔𝟑,𝒂𝟑 −  𝑸 𝒔𝟐,𝒂𝟐   ( 7 ) 

⋮ 

This is updated as the total value function for the next 

cycle of learning. According to [9], it is allowed to have a 

one step gradient search of the value function; 

exploitation for ease of real time implementation and less 

computational burden. This was achieved as the temporal 

difference which is evaluated as 

𝜹𝒕 =  𝒓𝒕+𝟏 +  𝜸𝑸 𝒔𝒕+𝟏,𝒂𝒕+𝟏 −  𝑸 𝒔𝒕,𝒂𝒕   ( 8 ) 

According to [12], an optimal control effort is given as  

𝑢∗  =  −KX  but according to differential games 

algorithm, this is expressed as 

 𝒖∗ =  −
𝟏

𝟐
 𝑹−𝟏𝒈𝑻𝛁𝑽∗   ( 9 ) 

where  ∇𝑉∗ is taken as the change in the optimal cost 

function. In this work, the temporal difference between 

successive cost functions is used as the reinforcement to 

the optimal control. 

The control signals from a feed forward neural network 

are compared with this control signal. Then back 

propagation algorithm updates the feedforward neural 

network weights using back propagation. This means that 

we are correcting the error in the control deflection in the 

next control deflection through update of neural network  

weights thus slowly taking our deflections to the best 

available control effort in each consecutive cycle.  

In this work the issue of exploration which is also central 

to RL alongside exploitation is not addressed. Here the 

RL controller only exploits the value function and new 

states are found by inference of favorable value functions.  

Implementation 

The aerodynamic coefficients that constitute the values in 

the mathematical model as provided for in [7] are taken 

from [1]  and [8] as 𝑚 = 1.9𝑘𝑔, 𝑏 = 1.2𝑚, 𝑔 = 9.8
𝑚

𝑠2 ,

𝑆 = 0.32 𝑚2, 𝑐 = 0.3 𝑚, 𝜌 =
1.225𝑘𝑔

𝑚3 ,
1

𝜋𝑒𝐴𝑅
= 0.0815  

With the above parameters, the trim condition was 

obtained as: 

𝐴 =   

−1.4000 0 0 9.4953
−30.9000 −12.8000 14.4000 0

1.4781 −0.4480 −6.080 0
0 1.0000 0 0

  

𝐵 =   

0 0.7412
61.4000 12.4000
−3.6700 15.0000

0 0

  

Simulations were carried out in Matlab/Simulink. The 

controller designed using the reinforcement learning 

method described above was compared with a well tuned 

PID controller. The two controllers were used for real 

time UAV control in X-Plane using the schematic shown 

in Fig. 6 below. 

 

Fig. 6: Software-In-the-Loop Simulation 

 

 

 



V. RESULTS AND DISCUSSION 

The state space model given above was used to design the 

controller in Matlab/Simulink as described in the 

preceding section. Initially, a single step heading 

reference was designed for an actual flight regime of 500 

initial heading to 1000 final heading and the results were 

as below. Fig. 9 shows the PID response to the step 

reference. The rise time is 1.4007 seconds and the system 

does not settle within the bounds of 0.5% of final value 

that was specified. The percentage overshoot was 

calculated to be 6.3119%., which is close to that reported 

in [2] where a mathematical model was used.

 

Fig. 9: PID controller response to a step heading reference 

The rise time is 1.2663 seconds as compared to PID’s 

1.4007 seconds and the system settles after 21.371 

seconds. The percentage overshoot is 3.1083% for the 

RL controller which is lesser than the PID’s. 

 

Fig. 10:RL controller response to a step heading 

The next results are for another flight regime in X-Plane 

where the UAV is commanded from an initial heading of 

400. The aircraft is then commanded to go to 800 and 

then 500 and so on. The Fig. 11 and Fig. 12 show the 

results where the heading in degrees is plotted on the 

vertical axis against time in seconds on the horizontal 

axis.  

From Fig. 12, in the first 10 seconds the response of the 

RL controller is poor, as compared to that of the PID 

controller in Fig. 11; this is due to the fact that the  

artificial neural network weights are being continuously 

adjusted where initially big adjustments are expected, 

then the neural weights settle around the optimum 

weights. It should be noted that the initial weights were 

randomized. After 10 seconds the response stabilizes and 

follows the reference more robustly than the PID 

controller. It can also be seen that there is an overshoot on 

the first step heading change but due to adaptation that 

overshoot is eliminated in the consecutive step heading 

angle changes as is evident from the Fig. 12.  

 

Fig. 11: PID controller response in X-Plane 

Due to the poor initial tracking response of the RL 

controller, the data from Fig. 12 was used to train the 

designed controller neural network weights using the 

nonlinear autoregressive network with exogenous inputs, 

NARX in Matlab. The neural network weights achieved 

were set as initial weights in the designed RL controller 

and the simulation was ran again. The response was as 



 

Fig. 12: RL controller response in X-Plane 

shown in Fig. 13. There were some improvements on the 

initial tracking; there is less oscillations and overshoots 

during the initial stages as compared to Fig. 12 where the 

initial weights were randomly initialized. 

 

Fig. 2:RL controller response after training 

Conclusion 

A reinforcement learning controller for heading control 

in a fixed wing UAV has been presented. As it has been 

shown using simulations in X-Plane, PID controller 

performs well to tracking the reference initially from any 

random position but its tracking response is poor, it 

overshoots in every step reference heading change and 

does not track the reference robustly. The RL controller 

produced better tracking results and shows the usability 

of this method. 
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