

Strathmore
UNIVERSITY

> School of Computing and Engineering Sciences Bachelor of Informatics and Computer Science (ICS). Bachelor of Science in Computer Networks and Cyber Security End of Semester Examination
> ICS 1205 - Linear Algebra
> CNS 1205 - Linear Algebra

Instruction

1. Answer QUESTION ONE and any other TWO QUESTIONS

QUESTION ONE [30 Marks]

a) Are the following statements true or false?
i. A linear system of four equations in three unknowns is always inconsistent.
ii. A linear system with fewer equations than unknowns must have infinitely many solutions.
iii. If the system $\mathbf{A X}=\mathbf{B}$ has a unique solution, then A must be a square matrix.
b) The product of two eigenvalues of the matrix $\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ is 16 . Find the third eigenvalue.
c) Find the rational number t for which the following system is consistent and solve the system for this value of t.

$$
\begin{aligned}
x+y & =2 \\
x-y & =0 \\
3 x-y & =t
\end{aligned}
$$

d) Show that $H=\left[\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right]$ satisfies the Cayley-Hamilton theorem.
e) Find the eigenvectors of

$$
J=\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & -1 & 5 \\
0 & 0 & 2
\end{array}\right]
$$

f) Suppose A is a 2×2 matrix with eigenvalues -1 and 3 . Then for each positive integer n, find a_{n} and b_{n} such that $A^{n+1}=a_{n} A+b_{n} I$ where I is the corresponding identity matrix.
g) Differentiate between Gaussian elimination and Gauss-Jordan elimination.
h) Give the geometric interpretation of the following systems; system with one solution, system with no solution and a system with many solutions.
[3 Marks]

QUESTION TWO [20 Marks]

a) Solve the following system by using the Gauss-Jordan elimination method;

$$
\begin{array}{r}
z+4 y=2 \\
2 x+6 y-2 z=3 \\
8 y+4 x-5 z-4=0
\end{array}
$$

b) Solve by Gaussian elimination:

$$
\begin{aligned}
x+2 y & =2+3 z \\
-9 z+6 x & =-3 y+6 \\
7 x+14 y-21 z & =13
\end{aligned}
$$

[4 Marks]
c) For what values of a and b does the system below have
(i) No solution?
(ii) Many solutions?
(iii) A unique solution?

$$
\begin{array}{r}
x-2 y+3 z=4 \\
2 x-3 y+a z=5 \\
3 x-4 y+5 z=b
\end{array}
$$

[10 Marks]

QUESTION THREE [20 Marks]

a) Solve for x and y using the Crammers rule given that $a x+b y=E$ and $c x+d y=F$ given that $a, b, c, d, E, F \in \mathbb{R}$.
b) Given $M=\left[\begin{array}{ccc}2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ find M^{4} and M^{-1}
c) If 1 and 2 are the eigenvalues of a 2×2 matrix A, what are the eigen values of A^{2} and A^{-1}.
[5 Marks]

QUESTION FOUR [20 Marks]

a) Diagonalize the matrix $L=\left[\begin{array}{ccc}1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1\end{array}\right]$
b) From (a) above, give the three possible choices of P and D that will give the result $L P=P D$ where P is the matrix formed from the eigenvectors and D is a diagonal matrix.
c) Use Crammer's rule to solve for the unknowns in

$$
\begin{aligned}
& 5 a-2 b+3 c=16 \\
& 2 a+3 b-5 c=2 \\
& 4 a-5 b+6 c=7
\end{aligned}
$$

d) Using the Cayley-Hamilton theorem find M^{4} given that $M=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$

QUESTION FIVE [20 Marks]

a) Use the adjoint method to find the inverse of $\left[\begin{array}{ccc}1 & 2 & -3 \\ 2 & 5 & -8 \\ -3 & -5 & 8\end{array}\right]$ and prove your answer. [10 Marks]
b) Use row operations to find the inverse of $\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & -1 & 1 \\ 1 & 1 & -1\end{array}\right]$ and verify your answer.
[10 Marks]

