Strathmore
UNIVERSITY

SCHOOL OF COMPUTING AND ENGINEERING SCIENCES

BACHELOR OF SCIENCE INFORMATICS AND COMPUTER SCIENCE END OF SEMESTER EXAMINATION

CNS 1204: Calculus II

Instructions

1. This examination consists of FIVE questions.
2. Answer Question ONE (COMPULSORY) and any other TWO questions.

QUESTION ONE (30 MARKS)

(a) Integrate the following:
(i) $\int_{0}^{9}(2 \sqrt{x}-4) d x$
(ii) $\int\left(\frac{1}{7-5 x}\right) d x$
(b) The GoldPlus Company determines that the marginal cost for their Aiibe 64GB flash drive is given by the differential rate equation

$$
\frac{d C}{d x}=-0.02 x+6
$$

where x is the number of flash drives produced and C is the cost in dollars.
(i) Determine the general solution of the cost function C
(ii) Find the particular cost function C, knowing that the cost of producing 10 Aiibe 64GB flash drive is $\$ 400$.
(c) If the population of a country is 40 million people and the population is increasing exponentially with a growth constant $k=0.69$, calculate precisely the population after 7 years. [Hint: $\left.y(t)=y_{0} e^{k t}\right]$
(d) Determine the exact area of the shaded region in the figure 1 below.

Figure 1
(e) Determine the particular solution for the following initial value problem
[5 Marks]

$$
\frac{d y}{d x}=x y-3 x, \quad y(0)=4
$$

(f) Use the Midpoint Rule with $n=5$ to estimate $\quad \int_{0}^{1} e^{x^{2}} d x$

QUESTION TWO (20 MARKS)

(a) Media consultants for the new local magazine ITRave! have projected that the number of subscriptions will grow during the first five years at a rate given by

$$
S^{\prime}(t)=\frac{1000}{(1+0.3 t)^{3 / 2}}, \quad 0 \leq t \leq 60
$$

where t is the number of months since the magazine's first issue and $S^{\prime}(t)$ is the rate of change in the number of subscriptions measured in subscriptions/month.
(i) Evaluate $S^{\prime}(12)$
(ii) Evaluate and interpret $\int_{0}^{6} S^{\prime}(t) d t$
(b) Determine the area between the x -axis and $f(x)=x^{2}-7 x+6$, on the interval $[2,6]$.
(c) Given that $x=5$ when $y=0$, solve the following initial value problem (IVP):

$$
e^{y} \frac{d y}{d x}=(2 x-4)
$$

QUESTION THREE (20 MARKS)

(a) Since running a series of first-come, first-served promotions, the FineHomes Furniture Store has found that its sales rate during its three-month sales drive is given by the function

$$
s(t)=\frac{10}{t}+2, \quad 1 \leq x \leq 12
$$

where t represents the number of weeks that the promotion has been running and $s(t)$ is the sales rate measured in $\frac{\text { thousands of dollars }}{\text { week }}$.
(i) Determine the total increase in sales generated from the first to the fifth week. [4 Marks]
(ii) Knowing that $\$ 6000$ was made during the first week, recover $R(t)$, the revenue generated after t weeks.
[5 Marks]
(b) Evaluate the integral
[5 Marks]

$$
\int \sin ^{2} x \cos ^{3} x d x
$$

(c) The Current (year 2020) population of the Earth is 7.5 billion people, and the yearly birth and death rates are $\beta=0.021$ and $\delta=0.009$ respectively. Assuming the birth and death rates remain constant, find the population of the Earth in the year 2120.
[6 Marks]

QUESTION FOUR (20 MARKS)

(a) A manager at the Black Box microprocessor manufacturing company finds through data gathered in research that the marginal cost function for a certain type of automobile computer chip made at the facility is given by

$$
M C(x)=C^{\prime}(x)=6 x \sqrt{x^{2}+11}
$$

where x represents the number of auto computer chips produced each hour and $\mathrm{MC}(\mathrm{x})$ represents the marginal cost. The manager also knows that it costs $\$ 1932$ to manufacture 5 chips.
(i) Recover the cost function C
(ii) Find the fixed costs. [To avoid confusion, call the arbitrary constant d.]
(b) Use integration by parts method to determine

$$
\int x e^{0.2 x} d x
$$

(c) Given that the half-life T of radium is 1690 years, how much will remain of five grams of radium after 2000 years?

QUESTION FIVE (20 MARKS)

(a) The marginal profit $M P(x)$ for producing x units of an electrical appliance is given by the linear function

$$
M P(x)=80+0.03 x
$$

where $M P(x)$ is in dollars per unit. Knowing that $P=0$ when $x=0$, recover the profit function P. [Hint: $\left.P(x)=\int M P(x) d x\right]$
(b) Evaluate the following antiderivative.

$$
\int x \ln x d x
$$

(c) Solve the given differential equation

$$
x \frac{d y}{d x}=2(y-3)
$$

(d) Find the area A of the region \mathcal{R} under the line $y=\frac{1}{2} x+2$, above the parabola $y=x^{2}$ and between the y-axis and $x=1$.

Figure 2

END OF PAPER

