

Strathmore

UNIVERSITY

STRATHMORE INSTITUTE OF MATHEMATICAL SCIENCES MASTER OF SCIENCE IN STATISTICAL SCIENCES END OF SEMESTER EXAMINATION
 STA 8303: PREDICTIVE MODELING AND DATA MINING

$\underline{\underline{\text { DATE: Wednesday } 15^{\text {th }} \text { August, } 2018}}$
Time: 2 Hours

Instructions

1. This examination consists of FOUR questions.
2. Answer Question ONE (COMPULSORY) and any other TWO questions.

Question 1 (20 Marks)

a) In statistical learning, distinguish between supervised and unsupervised learning. Give appropriate examples of methods that fall into each of these categories.
(5 Marks)
b) Explain how the each of the following resampling techniques is implemented in predictive modeling:
i) Validation set approach;
ii) Leave-One-Out cross-validation;
iii) Bootstrapping.
(8 marks)
c) For the model $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, where $\boldsymbol{\varepsilon} \sim \operatorname{MVN}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)$, derive an expression for the mean and variance of ridge regression estimator $\widehat{\boldsymbol{\beta}}_{\text {RIDGE }}=\left(\boldsymbol{X}^{\prime} \boldsymbol{X}+\lambda \boldsymbol{I}\right)^{-1} X^{\prime} \boldsymbol{y}$.
Give an expression for the mean square error of this estimator and explain its significance in terms of bias-variance trade-off.

Question 2 (20 Marks)
a) Explain the significance of the concept of Bias-variance trade-off in a statistical learning algorithm.
b) Suppose that we have a training set consisting of a set of points x_{1}, \ldots, x_{n} and real values y_{i} associated with each point x_{i}. We assume that there is a function with noise $y=f(x)+\varepsilon$, where the noise, ε, has zero mean and variance σ^{2}.

For a function $\hat{f}(x)$, that approximates the true function $f(x)$ as well as possible, by means of some learning algorithm, show that we can decompose its expected error on an unseen sample as follows:

$$
E\left[(y-\widehat{f}(x))^{2}\right]=\operatorname{Bias}[\widehat{f}(x)]^{2}+\operatorname{Var}[\widehat{f}(x)]+\sigma^{2}
$$

where $\operatorname{Bias}[\widehat{f}(x)]=E[\widehat{f}(x)-f(x)]$ and $\operatorname{Var}[\widehat{f}(x)]=E\left[\widehat{f}(x)^{2}\right]-E[\widehat{f}(x)]^{2}$.
(5 Marks)
c) Sequential variable selection techniques, principal components regression, and Ridge regression analysis are 3 approaches used in combating Multicollinearity in data. Distinguish between them, explaining advantages of each technique.

Question 3 (20 Marks)

a) Distinguish between the following concepts in classification algoritms: Sensitivity and specificity.
(4 Marks)
b) A Receiver Operating characteristic function is a useful tool in predictive modeling. Explain how an ROC functions can be developed for a given statistical learning procedure and describe its application in predictive modeling.
c) A team of researcher at CDC-Kenya would like to develop a predictive model for TB in Kenya using two explanatory variables: HIV status; and smoking status.

Table 1 Confusion matrices for the three models considered

Fit 1: HIV status as the only predictor

	Predicted status	
Actual status	$\underline{\text { Negative }}$	Positive
Negative	4000	1000
Positive	2000	3000

Fit 2: smoking status as the only predictor

	Predicted status	
Actual status	Negative	Positive
Negative	2000	3000
Positive	3200	1800

Fit 3: HIV and smoking predictors

Actual status	Predicted status	
	$\frac{\text { Negative }}{}$	$\frac{\text { Positive }}{}$
	3300	1700
	1000	4000

i) From the confusion matrices above, compare the 3 models. Compare your results based on model accuracy.
ii) For the best fitting model, compute the following measures: sensitivity, specificity and the false positive rate.

Question 4 (20 Marks)

a) Describe the purpose and objective of Principal Components Analysis (PCA) and give any 3 examples of areas in which its finds application.
(6 Marks)
b) Describe any other unsupervised learning procedure, apart from, you are aware of.
(6 Marks)
c) A random sample of 74 cars was selected. For each car the following variables were measured: headroom [Headroom (in.)], trunk [Trunk space (cu. ft.)], weight [Weight (lbs.)], length [Length (in.)], turn [Turn Circle (ft.)], and displacement [Displacement (cu. in.)].
Based on the results of the PCA analysis given in the Appendix:
i. Explain how many principal components you would select and why
ii. Explain what each of the selected component(s) describes;
i. Comment on the results of the 10 cars considered on the basis each of the components selected;
(2 Marks)
ii. Comment on the correlation circle and it's significance.

APPENDIX

Table 2 Correlation Matrix

| | headroom | trunk | weight | length | turn displacement | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| headroom | 1.0000000 | 0.6620111 | 0.4834558 | 0.5162955 | 0.4244646 | 0.4744915 |
| trunk | 0.6620111 | 1.0000000 | 0.6722057 | 0.7265956 | 0.6010595 | 0.6086350 |
| weight | 0.4834558 | 0.6722057 | 1.0000000 | 0.9460086 | 0.8574429 | 0.8948958 |
| length | 0.5162955 | 0.7265956 | 0.9460086 | 1.0000000 | 0.8642612 | 0.8351400 |
| turn | 0.4244646 | 0.6010595 | 0.8574429 | 0.8642612 | 1.0000000 | 0.7767647 |
| displacement | 0.4744915 | 0.6086350 | 0.8948958 | 0.8351400 | 0.7767647 | 1.0000000 |

Table 3 Eigen-values

	eigenvalue variance.percent cumulative.variance.percent	
Dim.1	4.50151930	75.0253217
Dim. 20.80149921	13.3583202	75.02532
Dim. 30.30817531	5.1362552	88.38364
Dim.4 0.22411069	3.7351781	93.51990
Dim. 50.12361234	2.0602056	97.25508
Dim. 60.04108315	0.6847191	99.31528

Figure 1 Scree-plot

Figure 2 Correlation circle

Table 4 Summary of results

