STRATHMORE INSTITUTE OF MATHEMATICAL SCIENCES

BSE 2205: INTERMEDIATE ECONOMETRICS

 END OF SEMESTER EXAMINATION FOR BACHELOR OF BUSINESSSCIENCE: ACTUARIAL SCIENCE, FINANCIAL ECONOMICS AND FINANCIAL ENGINEERING

11 December, 2023
Time: 2.5 hours

Instructions

1. This examination consists of Five questions.
2. Answer Question One(Compulsory) and any other two questions.

Question 1

(a) Consider the vector $X=\left[\begin{array}{lllll}x_{1} & x_{2} & x_{3} & \ldots & x_{n}\end{array}\right]^{\prime}$ and $Z=\left[\begin{array}{lllll}1 & 1 & 1 & \ldots & 1\end{array}\right]^{\prime}$. What matrix expressions and operations would yield the following?
(i) $\sum_{i=1}^{n} x_{i}\{1$ mark $\}$
(ii) $\sum_{i=1}^{n} x_{i}^{2}\{1$ mark $\}$
(iii) $\left[\begin{array}{cc}n & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2}\end{array}\right]\{2$ marks $\}$
(b) To estimate $\hat{\beta}_{O L S}$ we make several assumptions, one of these assumptions is that $E\left[U U^{\prime}\right]=\sigma^{2} I_{n}$. State the assumption(s) implied by this expression and with the help of appropriate algebra prove that indeed $E\left[U U^{\prime}\right]=\sigma^{2} I_{n}\{5$ marks $\}$
(c) Eugene has collected some data on Stata. The resulting matrix is $X=\left[\begin{array}{ll}0 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1\end{array}\right]$. He seeks to estimate the model, $y_{i}=\beta_{1}+\beta_{2} x_{2 i}+\beta_{3} x_{3 i}+u_{i}$. Therefore, column j corresponds to variable x_{j+1} Required:
(i) Construct the matrix X that Stata uses to estimate this model $\{3$ marks $\}$
(ii) Given X, what problems will Eugene experience in estimating the model $\{3$ marks\}
(iii) State the three specifications of the model that Eugene can estimate to overcome the challenges in 1 c (ii) above $\{3$ marks $\}$
(d) Consider the model $y_{i}=\beta_{1}+\beta_{2} x_{2 i}+\beta_{3} x_{3 i}+\epsilon_{i}$. Required:
(i) State the OLS assumption that would be violated if $x_{2 i}$ was endogenous $\{2$ marks $\}$
(ii) What would be the consequences of the endogeneity of $x_{2 i}$? \{4 marks\}
(iii) One of the methods of dealing with endogeneity requires that we understand how to derive $\hat{\beta}_{O L S}$ but with the generalized method of moments (GMM). Derive $\hat{\beta}_{G M M}$ for the equation in 1 (c) above $\{4$ marks $\}$
(iv) Suggest the solution for endogeneity implied in $1 \mathrm{c}(\mathrm{iii})$ above $\{2$ marks $\}$
[30 marks]

Question 2

(a) Consider the model $Y=X \beta+U$ where $Y=\left[\begin{array}{llll}y_{1} & y_{2} & y_{3} \ldots & y_{n}\end{array}\right]^{\prime}$,

$$
X=\left[\begin{array}{ccccc}
1 & x_{21} & x_{31} & \ldots & x_{K 1} \\
1 & x_{22} & x_{32} & \ldots & x_{K 2} \\
1 & x_{23} & x_{33} & \ldots & x_{K 3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{2 n} & x_{3 n} & \ldots & x_{K n}
\end{array}\right], \beta=\left[\begin{array}{lllll}
\beta_{1} & \beta_{2} & \beta_{3} & \ldots & \beta_{K}
\end{array}\right]^{\prime} \text { and }\left[\begin{array}{llll}
U_{1} & U_{2} & U_{3} \ldots & U_{n}
\end{array}\right]^{\prime}
$$

Required:
(i) If U is the residual, derive $\hat{\beta}_{O L S}$ using matrix algebra $\{3$ marks $\}$
(ii) Show that $\hat{\beta}_{O L S}$ is unbiased $\{3$ marks $\}$
(iii) Derive the expression for $\operatorname{var}\left(\hat{\beta}_{O L S}\right)\{2$ marks $\}$
(iv) If $Y=\left[\begin{array}{lllll}0 & 1 & 0 & 1 & 0\end{array}\right]^{\prime}$ and $x_{2}=\left[\begin{array}{lllll}0 & 1 & 1 & 0 & 0\end{array}\right]^{\prime}$ find $\hat{\beta}_{O L S}$ using the expression derived in $2 \mathrm{a}(\mathrm{i})$ above $\{3$ marks $\}$
(v) If $\sigma^{2}=\frac{6}{25}$ find $\operatorname{var}\left(\hat{\beta}_{O L S}\right)$ using the expression in $2 \mathrm{a}(\mathrm{iii})$ above $\{3$ marks $\}$
(vi) What t-statistic is associated with the slope and intercept parameters given the estimates in 2 a (iv) and $2 \mathrm{a}(\mathrm{v})$ above? \{3 marks $\}$
(b) Using a well labelled diagram distinguish between residuals, errors and bias \{3 marks \}
[20 marks]

Question 3

You are given the following data sampling process $y_{i}=\beta_{1}+\beta_{2} x_{2 i}+\epsilon_{i}$ where:

$$
\begin{array}{r}
\epsilon_{i}=\sqrt{x_{2 i}} * u_{i} \\
u_{i} \stackrel{i i d}{\sim} N(0,1)
\end{array}
$$

and $x_{2 i}$ is a non-stochastic positive variable.
(a) Show that this model is heteroskedastic $\{2$ marks $\}$
(b) If the empirical information is $Y=\left[\begin{array}{llll}4 & 2 & 5 & 7\end{array}\right]^{\prime}$ and $x_{2 i}=\left[\begin{array}{llll}1 & 1 & 4 & 4\end{array}\right]^{\prime}$. Estimate $\hat{\beta}_{O L S}\{2$ marks $\}$
(c) What are the characteristics of $\hat{\beta}_{O L S}$? \{2 marks $\}$
(d) Discuss how you would transform the data so that you could remove the heteroskedasticity \{2 marks\}
(e) Now estimate the model with the empirical information given in section (b), but by GLS. $\{4$ marks $\}$
(f) Show that in this case $\operatorname{var}\left(\hat{\beta}_{G L S}\right)=\left[\begin{array}{cc}\frac{10}{9} & -\frac{4}{9} \\ -\frac{4}{9} & \frac{5}{18}\end{array}\right]\{2$ marks $\}$
(g) Supply the robust standard errors that can be used to test the significance of β_{1} and β_{2} in 2(c) above $\{2$ marks $\}$
(h) The figure below shows edited stata output detailing results for a heteroscedasticity test. Use it to test whether the reference estimation was heteroscedastic. \{2 marks\}

(i) Benji ran the following regression Price $_{i}=\beta_{1}+\beta_{2}$ lotsize $+u_{i}$. If this regression was heteroscedastic and price and lot-size are positively related, sketch the distribution of price around the line of best fit. $\{2$ marks $\}$
[20 marks]

Question 4

Consider the following data sampling process

$$
\begin{array}{r}
Y_{t}=\beta x_{t}+\epsilon_{t} \text { where } \\
\epsilon_{t}=0.6 \epsilon_{t-1}+U_{t} \\
U_{t} \stackrel{i i d}{\sim} N(0,1)
\end{array}
$$

You are told that x is exogenous and are also given the following matrices:
$X^{\prime} X=\left[\begin{array}{ll}20 & 10 \\ 10 & 10\end{array}\right]^{\prime}, X^{\prime} y=\left[\begin{array}{l}86.6 \\ 68.4\end{array}\right]^{\prime}, X^{\prime} \Psi X=\left[\begin{array}{cc}72.5 & 36.25 \\ 36.25 & 32.55\end{array}\right]^{\prime}, X^{\prime} \Psi^{-1} X=\left[\begin{array}{cc}5.75 & 2.875 \\ 2.875 & 3.8125\end{array}\right]^{\prime}$ and $X^{\prime} \Psi^{-1} y=\left[\begin{array}{c}25.475 \\ 25.29375\end{array}\right]^{\prime}$ where $\sigma^{2} \Psi$ is $\mathrm{E}\left(\epsilon \epsilon^{\prime}\right)$
Required:
(a) Assumme that $\epsilon_{t} \sim N\left(\mu_{\epsilon}, \sigma_{\epsilon}^{2}\right)$ for every t. Show that $\mu_{\epsilon}=0$ and $\operatorname{var}\left(\epsilon_{t}\right)=\frac{25}{16}\{3$ marks\}
(b) What is the shape and dimension of Ψ ? (You don't have to write it out in full) \{4 marks\}
(c) Estimate β_{1} and β_{2} using OLS $\{3$ marks $\}$
(d) Discuss the characteristics of $\hat{\beta}_{O L S}\{5$ marks $\}$
(e) Estimate the true value of variance-covariance matrix of $\hat{\beta}_{O L S}\{3$ mark $\}$
(f) Test the null hypothesis that $\beta_{2}=0$ using your OLS estimator of $\beta_{2}\{2$ marks $\}$

Question 5

You are given the following description of a data sampling process $y_{i}=\beta_{1}+\beta_{2} x_{i}+\epsilon_{i}$. Each ϵ_{i} is $\epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$. You have a sample size of 1000 and the following information: $\sum x_{i}=2,000, \sum x_{i}^{2}=9,000, \sum x_{i} y_{i}=8,000$ and $\sum y_{i}=5,000$. Required:
(a) Find $E\left[y_{i} \mid x_{i}\right]\{2$ marks $\}$
(b) Find $\operatorname{var}\left[y_{i} \mid x_{i}\right]\{2$ marks $\}$
(c) How does $X^{\prime} X$ and $X^{\prime} Y$ look like in this case $\{4$ marks $\}$
(d) Find $\hat{\beta}_{\text {ols }}$ given your findings in 5 (c) above $\{4$ marks $\}$
(e) What is the true value of $\operatorname{var}\left(\hat{\beta}_{O L S}\right)$ given the above findings? $\{4$ marks $\}$
(f) If $\epsilon_{i}^{\prime} \epsilon_{i}=300,000$, test the statistical significance of each regression coefficient given that $t_{\text {critical }}=1.96\{3$ marks $\}$
[20 marks]

Be More be Strathmore! ©

