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I. Introduction

A finite ring R is called completely primary if all its zero divisors including the zero element
form the unique maximal ideal J . Finite completely primary rings are precisely local rings with
unique maximal ideals.

All rings considered in this work are commutative with identity 1 6= 0 unless specified
otherwise, that ring homomorphisms preserve identities, and that a ring and its subrings have
the same identity. Moreover, we adopt the notation used in [1], [2] and [3], that is, R will denote
a finite ring, unless otherwise stated, J will denote the Jacobson radical of R, and we will denote
the Galois ring GR(pk, pkr) of characteristic pk and order pkr by Ro, for some prime integer
p, and positive integers k, r. We denote the unit group of R by U(R); if g is an element of
U(R), then o(g) denotes its order, and 〈g〉 denotes the cyclic group generated by g. Similarly,
if f(x) ∈ R[x], we shall denote by 〈f(x)〉 the ideal generated by f(x). Further, for a subset A
of R or U(R), |A| will denote the number of elements in A. The ring of integers modulo the
number n will be denoted by Zn, and the characteristic of R will be denoted by charR. We
denote a direct product of r cyclic groups Zm by Zrm or by Zm × ... × Zm︸ ︷︷ ︸

r

.

The rest of the paper is organized as follows. In Section 2, we state without proofs
some general results on groups of units of completely primary finite rings which are relevant
to our work. In section 3, we give an explicit description of the known structures of groups
of units of certain completely primary finite rings R of order pnr with maximal ideals J such
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that J 3 = (0), J 2 6= (0). Finally, in section 4, we determine the structure of the unit group
U(R) of R and in some cases, its generators, when the characteristic of R is p2, s ≥ 3 and
1 ≤ dimRo/pRo

(J 2) < s(s+ 1)/2, without considering structural matrices of isomorphic classes
of these types of rings. This complements the author’s earlier solution of the problem in the
case when the characteristic of R is p, s = 3, t = 1 and J 2 ⊆ ann(J ), the annihilator of J .

II. Completely primary finite (CPF) rings

Let R be a completely primary finite ring, J the set of all zero divisors in R, p a prime, k, n and
r be positive integers. Properties of completely primary finite (CPF) rings and those of their
groups of units, with different aims and scope, appear in several articles (e.g. [6], [7]), and below
we state some of the results without proofs ([6]): |R| = pnr, J is the Jacobson radical of R,
J n = (0), |J | = p(n−1)r, R/J ∼= GF (pr), the finite field of pr elements and charR = pk, where
1 ≤ k ≤ n. If n = k, it is known that, up to isomorphism, there is precisely one completely
primary ring of order pkr having characteristic pk and residue field GF (pr). It is called the
Galois ring GR(pkr, pk) and a concrete model is the quotient Zpk [X]/〈f(x)〉, where f(x) is a
monic polynomial of degree r, irreducible modulo p. Any such polynomial will do: the rings are
all isomorphic. Trivial cases are GR(pn, pn) = Zpn and GR(pn, p) = Fpn . In fact, R = Zpn [b],
where b is an element of R of multiplicative order pr − 1; J = pR and Aut(R) ∼= Aut(R/pR)
(see Proposition 2 in [6]).

Let R be a completely primary ring, |R/J | = pr and charR = pk. Then it can be
deduced from [6] and [7] that R has a coefficient subring Ro of the form GR(pk, pkr) which

is clearly a maximal Galois subring of R. Moreover, if R
′

o is another coefficient subring of R

then there exists an invertible element x in R such that R
′

o = xRox
−1 (see Theorem 8 in [6]).

Furthermore, there exist elements m1, ..., mh ∈ J and automorphisms σ1, ..., σh ∈ Aut(Ro)

such that R = Ro ⊕
h∑
i=1

Romi (as Ro-modules), miro = rσi
o mi, for all ro ∈ Ro and any i =

1, ..., h. Moreover, σ1, ..., σh are uniquely determined by R and Ro. The maximal ideal of R

is J = pRo ⊕
h∑
i=1

Romi. We call σi the automorphism associated with mi and σ1, ..., σh the

associated automorphisms of R with respect to Ro.
Now, let Ro = Zpk [b] be a coefficient subring of R of order pkr and characteristic pk

and let Ko = 〈b〉 ∪ {0}, denote the set of coset representatives of J in R. Then it is easy to

show that every element of Ro can be written uniquely as
∑k−1
i=0 λip

i, where λi ∈ Ko.
Let R be a completely primary finite ring (not necessarily commutative). The following

facts are useful (e.g. see [6, §2]): The unit group U(R) of R contains a cyclic subgroup 〈b〉
of order pr − 1 and a p−Sylow subgroup 1 + J of order p(n−1)r; hence U(R) is a semi-direct
product of 1 + J by 〈b〉 and |U(R)| = p(n−1)r(pr − 1); the unit group U(R) is solvable; if G
is a subgroup of U(R) of order pr − 1, then G is conjugate to 〈b〉 in U(R); if U(R) contains a
normal subgroup of order pr − 1, then the set Ko = 〈b〉 ∪ {0} is contained in the center of the
ring R; and (1 + J i)/(1 + J i+1) ∼= J i/J i+1 (the left hand side as a multiplicative group and
the right hand side as an additive group).

III. Some known groups of units of CPF rings with J 3 = (0)

Let R be a commutative completely primary finite (CPF) ring with maximal ideal J such that
J 3 = (0) and J 2 6= (0). Then charR = pk, where 1 ≤ k ≤ 3 (see [1]). Let s, t, λ be numbers
in the generating sets for the Ro−modules U, V, W, respectively, so that

R = Ro ⊕ U ⊕ V ⊕W
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and

J = pRo ⊕ U ⊕ V ⊕W.
In [3] we have determined the group of units U(R) of the ring R and its generators

when s = 2, t = 1, λ = 0 and characteristic of R is p; and when t = s(s + 1)/2, λ = 0, for
a fixed integer s, for all the characteristics of R. It was noted that U(R) and its generators
depended on the structural matrices (aij) and on the parameters p, k, r, and s. In [4] we
obtained the structure of U(R) and its generators when s = 2, t = 1, λ = 0 and characteristic
of R is p2 and p3; and the case when s = 2, t = 2, λ = 0 and characteristic of R is p. In
both papers, [3] and [4], we assumed that λ = 0 so that the annihilator of the maximal ideal J
coincides with J 2. It was also noted that the earlier strategy (that of considering different types
of symmetric matrices) was thus not viable anymore and we followed a different approach; that
of considering structural matrices of isomorphic classes of these types of rings with the same
invariants p, r, k, s, and t.

In [5], we proved that 1 + J is a direct product of its subgroups 1 + pRo ⊕ U ⊕ V
and 1 +W and further determined the structure of 1 + W, in general; we also determined the
structure of U(R) and its generators when s = 3, t = 1, λ ≥ 1 and charR = p. We then
generalized the structure of U(R) in the cases when s = 2, t = 1; t = s(s + 1)/2, for a fixed
integer s, and for all characteristics of R; and when s = 2, t = 2 and charR = p; determined in
[3] and [4], to the case when ann(J ) = J 2 +W so that λ ≥ 1.

We state the following result which summarizes the structure of the group of units U(R)
of the rings R determined in [3], [4] and [5].

Theorem III.1. The group of units U(R) of a commutative completely primary finite (CPF) ring
R with maximal ideal J such that J 3 = (0) and J 2 6= (0), and with the invariants p, k, r, s, t,
and λ ≥ 1, is a direct product of cyclic groups as follows:

i) If s = 2, t = 1, λ ≥ 1 and charR = p, then

U(R) =


Z2r−1 × Zr4 × Zr2 × (Zr2)λ or
Z2r−1 × Zr2 × Zr2 × Zr2 × (Zr2)λ if p = 2
Zpr−1 × Zrp × Zrp × Zrp × (Zrp)λ if p 6= 2;

ii) If s = 2, t = 1, λ ≥ 1 and charR = p2, then

U(R) =

{
Zpr−1 × Zrp × Zrp × Zrp × Zrp × (Zrp)λ or
Zpr−1 × Zrp × Zrp2 × Zrp2 × Zrp × (Zrp)λ if p 6= 2,

and if p = 2

U(R) =



(Z2 × Z2)× (Z2 × Z2)× Z2 × (Z2)λ if r = 1 and 2 ∈ J − ann(J );
Z2r−1 × Zr4 × Zr4 × Zr2 × (Zr2)λ if r > 1 and 2 ∈ J − ann(J );
Z2r−1 × Zr4 × Zr4 × (Zr2)λ or
Z2r−1 × Zr4 × Zr2 × Zr2 × (Zr2)λ if 2 ∈ J 2;
Z2r−1 × Zr4 × Zr2 × (Zr2)λ or
Z2r−1 × Zr2 × Zr2 × Zr2 × (Zr2)λ if 2 ∈ ann(J )− J 2;

iii) If s = 2, t = 1, λ ≥ 1 and charR = p3, then

U(R) =

{
Zpr−1 × Zrp2 × Zrp × Zrp × Zrp × Zrp × (Zrp)λ or

Zpr−1 × Zrp × Zrp2 × Zrp2 × Zrp × (Zrp)λ if p 6= 2,

and

U(R) =

 Z2r−1 × Zr4 × Zr4 × Zr2 × (Zr2)λ or
Z2r−1 × Zr4 × Zr2 × Zr2 × Zr2 × (Zr2)λ or
Z2r−1 × Zr2 × Zr4 × Zr2 × Zr2 × Zr2 × (Zr2)λ if p = 2;
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iv) If s = 2, t = 2, λ ≥ 1 and charR = p, then

U(R) =


Zpr−1 × Zrp × Zrp × Zrp × Zrp × (Zrp)λ if p 6= 2,
Z2r−1 × Zr4 × Zr4 × (Zr2)λ or
Z2r−1 × Zr4 × Zr2 × Zr2 × (Zr2)λ if p = 2;

v) If t = s(s+ 1)/2, λ ≥ 1, and
(a) charR = p, then

U(R) =

{
Z2r−1 × (Zr4)s × (Zr2)γ × (Zr2)λ if p = 2
Zpr−1 × (Zrp)s × (Zrp)s × (Zrp)γ × (Zrp)λ if p 6= 2;

(b) charR = p2, then

U(R) =

{
Z2r−1 × Zr2 × (Zr2)s × (Zr2)s × (Zr2)γ × (Zr2)λ if p = 2
Zpr−1 × (Zrp)× (Zrp)s × (Zrp2)s × (Zrp)γ × (Zrp)λ if p 6= 2;

(c) charR = p3, then

U(R) =

{
Z2r−1 × Zr2 × Z2 × Zr−1

4 × (Zr2)s × (Zr4)s × (Zr2)γ × (Zr2)λ if p = 2
Zpr−1 × Zrp2 × (Zrp)s × (Zrp2)s × (Zrp)γ × (Zrp)λ if p 6= 2;

where γ = (s2 − s)/2.

The proof follows from Section 3.1 in [3], Propositions 2.2, 2.3, 2.4 and 2.5 in [4],
Theorem 4.1 in [3] and Proposition 2.3 in [5].

The above results describe structures of groups of units of completely primary finite
rings when m = 2 , that is, when J 2 = (0); when m = k = n, that is Jm = (0) and
charR = pm; and when m = 3, that is, J 3 = (0), for given parameters. The solution for
different parameters when m = 3 and m ≥ 4 is left for further consideration.

In section 4 we extend the above problem to the case when the characteristic of R is
p2, s ≥ 3 and 1 ≤ dimRo/pRo

(J 2) < s(s + 1)/2, without considering structural matrices of
isomorphic classes of these types of rings.

IV. Group of units of CPF rings of characteristic p2

We now consider the structure of the group of units of completely primary finite rings with
maximal ideals J such that J 3 = (0), J 2 6= (0), and with characteristic p2.

IV.1. A construction of commutative rings of characteristic p2.

Let Ro be the Galois ring GR(p2, p2r). Let s, d, t be integers with either 1 ≤ 1 + t ≤ s(s+ 1)/2
or 1 ≤ d+ t ≤ s(s+ 1)/2. Let V be an Ro/pRo-space, which when considered as an Ro-module,
has a generating set {v1, ..., vt} and let U be an Ro-module with an Ro-module generating set
{u1, . . . , us}; and suppose that d ≥ 0 of the ui are such that pui 6= 0. Since Ro is commutative,
we can think of them as both left and right Ro-modules.

Let (alij) be 1 + t or t+ d, s× s linearly independent symmetric matrices over Ro/pRo.
On the additive group R = Ro ⊕ U ⊕ V we define multiplication by the following

relations:

uiuj = aoijp+

d∑
l=1

alijpul +

t∑
k=1

ad+tij vk;

uivk = vkui = uiujuλ = pvk = vkvl = vlvk = 0; (IV.1)

uiα = αui, vkα = αvk; (1 ≤ i, j, λ ≤ s; 1 ≤ l ≤ d; 1 ≤ k ≤ t);
where α, aoij , a

l
ij , a

d+k
ij ∈ Ro/pRo.
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By the above relations, R is a commutative completely primary finite ring of charac-
teristic p2 with Jacobson radical J = pRo ⊕ U ⊕ V , J 2 = pRo ⊕ V or J 2 = pU ⊕ V and
J 3 = (0). We call (alij) the structural matrices of the ring R and the numbers p, n, r, s, d
and t invariants of the ring R.

The following result is proved in [1, Theorem 6.1].

Theorem IV.1. Let R be a ring. Then R is a commutative completely primary finite ring of
characteristic p2 with maximal ideal J such that J 3 = (0), J 2 6= (0), the annihilator of J
coincides with J 2 if and only if R is isomorphic to one of the rings given by the relations in
(IV.1).

Remark IV.2. We know that R = Ro ⊕ Rom1 ⊕ . . .⊕ Romh, where the elements mi ∈ J ; and
that J = pRo⊕Rom1⊕ . . .⊕Romh. Since J 3 = (0) and J 2 = ann(J ), with J 2 6= (0), we can
write

{m1, ..., mh} = {u1, ..., us, v1, ...., vt}
where, u1, ..., us ∈ J − J 2 and v1, ...., vt ∈ J 2, so that s+ t = h.

In view of the above considerations and by 1.8 of [1], the non-zero elements of

{1, p, u1, ..., us, pu1, ..., pus, v1, ...., vt} (IV.2)

form a “basis” for R over Ko = Ro/pRo.
Since pm = 0, for all m ∈ J 2, it is easy to check that if charR = p2, then either

(i) p ∈ J 2; or
(ii) p ∈ J − J 2.

These two cases do not overlap, and for clarity of our work, we consider them in turn.

Remark IV.3. Suppose that charR = p2 and p lies in J 2. In this case, (IV.2) becomes

{1, p, u1, ..., us, v1, ...., vt};
and by Proposition 3.2 of [1], 1 ≤ 1 + t ≤ s(s+ 1)/2. Hence, every element of R may be written
uniquely as

ao + a1p+

s∑
i=1

biui +

t∑
k=1

ckvk; ao, a1, bi, ck ∈ Ko;

and therefore,

uiuj = aoijp+

t∑
k=1

akijvk,

where aoij , a
k
ij ∈ Ro/pRo. Clearly, dimRo/pRo

(J 2) = 1 + t.

Remark IV.4. Suppose that d ≥ 0 is the number of the elements pui in (IV.2) which are not
zero. Suppose, without loss of generality, that pu1, ..., pud are the d non-zero elements. Then,
(IV.2) becomes

{1, p, u1, ..., us, pu1, ..., pud, v1, ...., vt}; (IV.3)

and by Proposition 3.2 of [1], we have 1 ≤ d + t ≤ s(s + 1)/2 and hence, every element of R
may be written uniquely as

λo + λ1p+

s∑
i=1

αiui +

d∑
l=1

βlpul +

t∑
k=1

γkvk; λo, λ1, αi, βl, γk ∈ Ko.

Clearly, the products uiuj ∈ J 2. Hence,

uiuj =

d∑
l=1

alijpul +

t∑
k=1

ak+dij vk, where alij , a
k+d
ij ∈ Ro/pRo, (IV.4)
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and dimRo/pRo
(J 2) = d+ t.

Now, since pul, vk ∈ J 2 (l = 1, ..., d; k = 1, ..., t), we can write them as sums of
products of elements of J . In particular, pul, vk can be written as linear combinations of pui
and uiuj with coefficients in Ro/pRo. Hence, since pul , vk (l = 1, ..., d; k = 1, ..., t) is a basis
for J 2 over Ro/pRo, we conclude that pui and uiuj (i, j = 1, ..., s) generate J 2.

Clearly, |R| = p2r · psr · pdr · ptr = p(2+s+d+t)r and |J | = p(1+s+d+t)r.

IV.2. The group of units.

Notice that since R is of order pkr and U(R) = R − J , it is easy to see that |U(R)| =
p(k−1)r(pr − 1) and |1 + J | = p(k−1)r, so that 1 + J is an abelian p-group. Thus, since R is
commutative,

U(R) = 〈b〉 · (1 + J ) ∼= 〈b〉 × (1 + J ); (IV.5)

a direct product of the p−group 1+J by the cyclic subgroup 〈b〉. Thus, it suffices to determine
the structure of the subgroup 1 + J of the group U(R).

Notice that

1 + J = 1 + pRo ⊕
s∑
i=1

Roui ⊕
t∑

k=1

Rovk.

Proposition IV.5. ([3], Proposition 3.4) If charR = p2, then 1 + J contains 1 + pRo as its
subgroup.

The structure of 1 + pRo is completely determined by Raghavendran in [6]. For con-
venience of the reader, we state here the following result. For details, refer to [6, Theorem
9].

We take r elements ε1, ..., εr in Ro with ε1 = 1 such that {ε1, ..., εr} is a basis of the
quotient ring Ro/pRo regarded as a vector space over its prime subfield GF (p). Then we have
the following.

Proposition IV.6. ([6, Theorem 9) If charRo = p2, then 1 + pRo is a direct product of r cyclic
groups 〈1 + pεj〉 (j = 1, ..., r), each of order p for any prime number p.

IV.2.1. Group of units of rings of characteristic p2 in which p ∈ J 2. Let R be a commutative
completely primary finite ring of characteristic p2 in which p ∈ J 2. Then dimRo/pRo

(J 2) = 1+t.
The following results determine the structure of the subgroup 1 +J of the group of units U(R)
of the ring R.

Proposition IV.7. Let charR = p2, s ≥ 3, 1 + t < s(s+ 1)/2, and suppose that p ∈ J 2. If p is
odd, then

1 + J ∼= Zrp × ... × Zrp︸ ︷︷ ︸
1+s+t

,

a direct product of (1 + s+ t)r cyclic groups of order p.

Proof. If p ∈ J 2, let a = 1 + x be an element of 1 + J with the highest possible order
and assume that x ∈ J − J 2. Then o(a) = p. This is true because

(1 + x)p = 1 + px+
p(p− 1)

2
x2 (since x3 = 0)

= 1 +
p(p− 1)

2
x2 (since p ∈ J 2 and px = 0)

= 1 (since p− 1 is even and px2 = 0).

Now let ε1, ..., εr ∈ Ro with ε1 = 1 such that ε̄1, ..., ε̄r ∈ Ro/pRo ∼= GF (pr) form a
basis for GF (pr) over its prime subfield GF (p), for any prime p and positive integer r.
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We first note the following results: For each i = 1, ..., r; j = 1, ..., s; and k = 1, ..., t,
(1 + εip)

p = 1, (1 + εiuj)
p = 1, (1 + εivk)p = 1, and gp = 1 for all g ∈ 1 + J . For integers

li, mi, ni ≤ p, we assert that

r∏
i=1

{(1 + εip)
li} ·

s∏
j=1

r∏
i=1

{(1 + εiuj)
mi} ·

t∏
k=1

r∏
i=1

{(1 + εivk)ni} = 1,

will imply li, mi, ni = p, for all i = 1, ..., r.

If we set Di = {(1 + εip)
l : l = 1, ..., p}, Ei,j = {(1 + εiuj)

m : m = 1, ..., p},
(j = 1, ..., s); and Fi,k = {(1 + εivk)n : n = 1, ..., p}, (k = 1, ..., t), for all i = 1, ..., r; we see
that Di, Ei,j , Fi,k are all subgroups of the group 1+J and these are all of order p as indicated
in their definition. The argument above will show that the product of the (1+s+ t)r subgroups
Di, Ei,j , Fi,k is direct. So, their product will exhaust 1 + J . This completes the proof.

�

Proposition IV.8. Let charR = p2, s ≥ 3, 1 + t < s(s+ 1)/2, and suppose that p ∈ J 2. If p = 2
and u2j = 0, for every j = 1, ..., s; then

1 + J ∼= Zr2 × ... × Zr2︸ ︷︷ ︸
1+s+t

,

a direct product of (1 + s+ t)r cyclic groups of order 2.

Proof. If u2j = 0, for every j = 1, ..., s; then the highest possible order of any element
in 1 +J is 2. The proof follows a similar argument to that of the case when p is odd, and may
be deduced from the previous proposition.

�

Proposition IV.9. Let charR = p2, s ≥ 3, 1 + t < s(s+ 1)/2, and suppose that p ∈ J 2. If p = 2
and suppose that l ≤ s is the number of the uj such that u2j 6= 0. Then

1 + J ∼= Zr4 × ... × Zr4︸ ︷︷ ︸
l

×Zr2 × ... × Zr2︸ ︷︷ ︸
m

,

a direct product of lr cyclic groups of order 4 and mr cyclic groups of order 2, where l +m =
1 + s+ t.

Proof. We first observe that if, without lose of generality, u21 6= 0 while u2j = 0, for every

j = 2, ..., s, then (1 + εiu1)4 = 1 and the elements 1 + εiuj , 1 + εivk, and 1 + εip, are all of
order 2; and if u21 6= 0, u22 6= 0 while u2j = 0 (j = 3, ..., s), then (1 + εiu1)4 = 1, (1 + εiu2)4 = 1
and the elements 1 + εiuj , 1 + εivk and 1 + εip, are all of order 2. Continuing the argument so
that every uj has a non-zero square, we see that (1 + εiuj)

4 = 1 and the elements 1 + εivk and
1 + εip, are all of order 2.

Since p, vk are linear combinations of uiuj with coefficients in Ro/pRo, the products
of elements 1 + εiuj generate the elements 1 + εivk and 1 + εip. By induction, we obtain the
desired result.

�

As an example to illustrate Proposition IV.9, suppose that s = 4 and t = 2. Then
|1 + J | = p(4+2+1)r and

1 + J ∼=

 Zr4 × Zr2 × Zr2 × Zr2 × Zr2 × Zr2;
Zr4 × Zr4 × Zr2 × Zr2 × Zr2; or
Zr4 × Zr4 × Zr4 × Zr2.
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IV.2.2. Group of units of rings of characteristic p2 in which p ∈ J − J 2. In this case,
dimRo/pRo

(J 2) = d+ t. The following result determines the structure of 1 +J in which d = s.

Proposition IV.10. Let charR = p2, s ≥ 3, d + t < s(s + 1)/2, and suppose that p ∈ J − J 2.
Suppose further that pui 6= 0, for every i = 1, ..., s. Then

1 + J ∼= Zrp × Zrp2 × ... × Zrp2︸ ︷︷ ︸
s

×Zrp × ... × Zrp︸ ︷︷ ︸
t

Proof. If p ∈ J − J 2, let a = 1 + x be an element of 1 + J with the highest possible
order and assume that x ∈ J − J 2. Then o(a) = p2, for any prime p.

This is true because, for any εi (i = 1, ..., r),

(1 + εix)p = 1 + pεix+
p(p− 1)

2
(εix)2 (since x3 = 0).

If p is odd, then (1 + εix)p = 1 + pεix, since px2 = 0. Now

(1 + pεix)p = 1 + p2εix+
p(p− 1)

2
(pεix)2

= 1, since charR = p2.

Hence, (1 + εix)p
2

= 1. If p is even, then

(1 + εix)2 = 1 + 2εix+ (εix)2, and (1 + εix)4 = 1.

Notice that

1 + J = (1 + pRo)× (1 +

s∑
i=1

Roui +

t∑
k=1

Rovk).

The structure of the group 1 + pRo is well known; and it is a direct product of r cyclic groups,
each of order p (see Proposition IV.6).

We now determine the structure of 1+
∑s
i=1Roui+

∑t
k=1Rovk. Choose ε1, ..., εr ∈ Ro

with ε1 = 1 such that ε1, ..., εr ∈ Ro/pRo ∼= GR(pr) form a basis for GF (pr) over GF (p).

For any prime p, since for each i = 1, ..., r, we have that (1 + εiuj)
p2 = 1, (j =

1, ..., s) (1 + εivk)p = 1, (k = 1, ..., t). Also, intersection of 〈(1 + εiuj)〉, and 〈(1 + εivk)〉
is trivial. Hence, the direct product of the cyclic groups 〈(1 + εiuj)〉, and 〈(1 + εivk)〉 exhaust

(1 +
∑s
i=1Roui +

∑t
k=1Rovk). Thus, 1 + J is of the required form, and this completes the

proof.

�

Remark IV.11. Proposition IV.10 is true for the two cases when u2i = 0 and when u2i 6= 0, for
i = 1, ..., s.

Remark IV.12. Suppose that puj = 0 and u2j = 0. Then, it is easy to check that |〈(1+εiuj)〉| = p,

and this can be proved in a similar manner to Propositions IV.7 and IV.8, cases where p ∈ J 2.

Remark IV.13. If puj = 0 and u2j 6= 0. Then |〈(1+εiuj)〉| = p, if p is odd, or |〈(1+εiuj)〉| = p2,
if p is even, and this can be proved in a similar manner to Propositions IV.7 and IV.9, cases
where p ∈ J 2, for p odd or even, respectively.

Remark IV.14. We remark here that the cases for which d < s of pu1, ..., pud is zero have
similar arguments to previous results and one may deduce the structure of 1 + J from the
preceding propositions.

Remark IV.15. By the above results and by equation (IV.5), the structure of U(R) is now
determined.
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Rings with other invariants p, n, r, s, t, d when J 3 = (0), and the cases Jm =
(0), Jm−1 6= (0), when m ≥ 4 and m < k are left for further consideration.
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