Strathmore
UNIVERSITY
SCHOOL OF COMPUTING AND ENGINEERING SCIENCES
BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONICS ENGINEERING
$2^{\text {nd }}$ SEMESTER 2021/2022 - UNIVERSITY EXAMINATION
BEE 1201: CIRCUIT THEORY I

DATE: $21^{\text {st }}$ March 2022
Time: $3: 30 \mathrm{pm}-6.30 \mathrm{pm}$

Instructions

1. This examination consists of FOUR questions.
2. Answer QUESTION ONE and any other TWO QUESTIONS.
3. One pocket calculator per-student is allowed as long it is used in "exam-mode".
4. All other electronic devices are to be kept at a distance and shutdown in your bags.

Question 1 (30 Marks)

(a) For the circuit shown in Fig. Q1(a), use the superposition theorem to find the voltage v_{o}

Fig. Q1(a)
6 Marks
(b) For the circuit shown in Fig. Q1(b), assuming an ideal op-amp, find v_{o} and i_{o}

Fig. Q1(b)
(c) The circuit shown in Fig. Q1(c) is at steady state before the switch closes at time $t=0$.

Determine the capacitor voltage, $v(t)$, for $t \geq 0$.

Fig. Q1(c)
(d) Given the circuit shown in Fig. Q1(e) where $i_{s}(t)=10 \cos (1000 t)$, assuming steady state values, find $v_{s}(t)$ and $v_{c}(t)$

Fig. Q1(d)
(e) A relay coil shown circuit in Fig. Q1(e) is connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate the power consumed by the 30Ω resistor, apparent power supplied by the source and the power factor.

Fig. Q1(e)
6 Marks

Question 2 (15 Marks)

(a) Find the Norton equivalent circuit for the circuit shown in Fig. Q2(a)

Fig. Q2(a)
(b) Given the circuit shown in Fig. Q2(b), use mesh analysis to find V_{x}

Fig. Q2(b)

Question 3 (15 Marks)

(a) For the circuit shown in Fig. Q3(a), find the values of source resistance load resistance R_{L} that will result in maximum power transfer. For this value of R_{L}, find the maximum power.

Fig. Q3(a)
5 Marks
(b) Use nodal analysis to find I_{x} in the circuit shown in Fig. Q3(b)

Fig. 3(b)
10 Marks

Question 4 (15 Marks)

(a) Fig. Q4(a) shows an unbalanced wye connected resistors supplied from a balanced wye connected 3 phase source having 415.69 V line to line voltage. Calculate the power delivered to each resistor.

Fig. Q4(a)
3 Marks
(b) Given the circuit shown in Fig. Q4(b) where $v_{i}(t)=10 \cos (1000 t)$, find $v_{o}(t)$.

Fig. Q4(b)

