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Nairobi, Kenya  2Division of Mathematics & Computer Science, University of South Carolina-

Upstate, 800 University Way, Spartanburg, South Carolina, USA Abstract: A major objective in 

microarray experiments is to identify a panel of genes that are associated with a disease outcome 

or trait. Many statistical methods have been proposed for gene selection within the last fifteen 

years. While the comparison of some of these methods has been done, most of them concentrated 

on finding gene signatures based on two groups. This study evaluates four gene selection 

methods when the outcome of interested is continuous in nature. We provide a comparative 

review of four methods: the Statistical Analysis of Microarrays (SAM), the Linear Models for 

Microarray Analysis (LIMMA), the Lassoed Principal Components (LPC), and the Quantitative 

Trait Analysis (QTA). Comparison is based on the power to identify differentially expressed 

genes, the predictive ability of the genelists for a continuous outcome (G2 checkpoint function), 

and the prognostic properties of the genelists for distant metastasis-free survival. A simulated 

dataset and a publicly available melanoma cell lines dataset are used for simulations and 

validation, respectively. A primary melanoma dataset is used for assessment of prognosis. No 

common genes were found among the genelists from the four methods. While the SAM was 

generally the best in terms of power, the QTA genelist performed the best in the prediction of the 

G2 checkpoint function. Identification of genelists depends on the choice of the gene selection 

method. The QTA method would be preferred over the other approaches in predicting a 

quantitative outcome in melanoma research. We recommend the development of more robust 

statistical methods for differential gene expression analysis. Keywords: Differential gene 

expression, Melanoma cell lines, Prediction, Power, Quantitative trait.  1. BACKGROUND  

Microarray technology has revolutionized genomic studies by enabling the study of differential 

expression of thousands of genes simultaneously. In the recent past, a number of statistical 

methods have been developed for class comparison and prediction, based on the gene expression 

profiling of tumors, cell-types, etc. One of the early methods developed was the foldchange 

method. This method did not account for statistical variation across the samples and suffered 

from bias if the data were not properly normalized [1].  

A number of articles have provided a survey of different statistical methods for finding 

differentially expressed genes (DEGs) [1-8]. Jeffery et al. [4] compared the efficiency of 10 

feature selection methods and applied the methods to 9 different binary (two class) microarray 

datasets. Bair [7] discussed a number of statistical methods, including fold change, methods 



based on the t-test and Bayesian methods that can be used to find differentially expressed genes. 

However, he did not compare their performance on any dataset. Bandyopadhyay et al. [8] 

reported a comprehensive survey of different parametric and nonparametric testing 

methodologies used for finding   
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DEGs from microarray datasets. Like in most of the studies, they did not exhaust all the available 

methods for finding DEGs.  

Despite all the surveys mentioned above, there is no unanimous agreement on any particular 

gene selection method as the standard. A review and comparison of the statistical methods may 

provide bioinformaticians and other biomedical researchers with a useful guide for choosing the 

right method for the right data in differential gene expression analysis. Furthermore, even though 

work has been done on the development of methods for the differential analysis of gene 

expression data measured in two conditions, open research questions still exist regarding the 

analysis of gene expression data in which the training signal is a continuous variable.  

This study reports a comparative review of four methods (SAM, LIMMA, LPC and QTA) and 

their performance in identifying genes that are associated with a continuous outcome from the 

systems biology of melanoma, using a larger number of melanoma celllines than reported in [9]. 

While the comparison of some of these methods has been done, most of them concentrated on 

finding gene signatures based on two groups. A comparison of the LPC method with other 

methods is conspicuously missing in almost all the surveys presented in the literature. 

Furthermore, the available studies do not assess the biological and clinical significance of the 

genes generated by theses  
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methods. Our study attempts to fill this gap in the literature. The comparison is based on the size 

and the statistical assessment of the predictive and the prognostic properties of the genelists 

produced by these methods. 2. OVERVIEW OF METHODS 2.1. Statistical Analysis of 

Microarrays (SAM)  

The SAM method was originally developed to identify genes that are differentially expressed by 

incorporating a set of gene-specific t-tests [10]. Although Tusher et al. [10] analyzed a two-state 

experiment (with a dichotomous covariate or response), the SAM procedure can be applied to 

studies with continuous responses as well. The SAM method identifies DEGs by use of gene-

specific moderated t-tests on the basis of the regression coefficient relative to the standard 

deviation of repeated expression measurements for that gene. SAM employs the false discovery 

rate (FDR) control for the multiple testing problem and estimates the FDR through the 



permutation of values of the response variable and the moderated t-tests. The SAM method is 

implemented in the R package called samr. 2.2. Linear Models for Microarray Analysis 

(LIMMA)  

LIMMA is an R package that integrates a number of statistical methods to effectively analyse 

large gene expression data [11]. LIMMA fits a linear model for each gene, given a series of 

arrays, and uses the Empirical Bayes (EB) method [12] to estimate the posterior variance for 

each gene [13, 14]. The use of the EB method allows combination of information across genes 

thus improving variance estimation. To assess the significance of each gene, the moderated 

tstatistics and their associated p-values are generally used [14]. limma calculates the Bayesian 

log -odds of differential expression for each gene. The higher the value of the log-odds, the more 

significant the result. The family-wise error rate (FWER) and the FDR are used in multiple 

testing adjustment. The LIMMA method is implemented in the R  package called limma. 2.3. 

Lassoed Principal Components (LPC)  

The lassoed principal components (LPC) method involves using existing gene-specific scores (T) 

to calculate scores that provide a more accurate ranking of genes as differentially expressed [15]. 

Some of the gene-specific scores can be calculated using LIMMA [11], SAM [10] and 

standardized regression methods,  

among others existing methods. LPC identifies significant genes based on the values of the 

FDRs. It estimates its FDR based on an adjustment of the FDR of the T [15]. The LPC method 

does not assume that genes are independent but rather takes into account that they work in 

pathways. The LPC method is similar to the LIMMA method in that they both combine 

information, or borrow strength, across genes. They do not also do permutation-based inference. 

The LPC algorithm is implemented in both the R  package called lpc [15] and the BRB-

ArrayTools software [16]. 2.4. Quantitative Trait Analysis (QTA)  

This approach finds genes that are significantly correlated with a quantitative outcome such as 

age. It uses the correlation coefficient as a measure of dependence to compute p-values. The two 

most commonly used correlation coefficients are the Pearson’s correlation coefficient and the 

Spearman’s (rank) correlation coefficient.  

There are two ways of controlling the number of false discoveries in the QTA approach. The first 

one is based on the p-values computed from the parametric t- or F-tests. Here, a stringent p-value 

threshold (say p<0.001), is used in controlling the number of false discoveries. The second 

approach uses multivariate permutation tests [17]. The QTA method is implemented in the BRB-

ArrayTools software [16].  

A concise summary of the four statistical methods is provided in Supplementary Table T1. 3. 

SIMULATED GENE EXPRESSION DATA We conducted a simple simulation study to 

compare the four methods in terms of power. Let n and G denote the number of samples and 

genes, respectively. Further, let D denote the number of genes assumed to be truly differentially 

expressed. Then (G!D) genes are assumed to be non-differentially expressed. The gene 

expression data matrix, X, is a G!n matrix of log2-ratios. We can write X asX=(X1,X2), where 

X1 and X2 are D!n and (G!D)"n matrices, respectively. We set D=50, and n=35 and G to be 



1000. We generated the (1000!D) genes from the standard normal distribution. To generate the D 

genes, we used the standard normal distribution in conjunction with the Cholesky decomposition 

[18] of their correlation matrix as follows:  1. We generate an unstructured correlation matrix !. ! 

is a (D+1)!(D+1) matrix that has (i,j)th element given by ! i,j :=corr(xi,xj)  
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that !=AA'.  3. Let  zi :N(0,In),i=1,2,...,(D+1).  4. Z=(z1,z2,...,zD+1 ! )  5. XD+1=AZ.  XD+1 is 

the gene expression matrix for D genes that are assumed to be differentially expressed or 

significantly correlated with the covariate y. y can take any of the D+1 row vectors from the 

matrix XD+1. X1 is therefore a submatrix of XD+1 with dimensions D!n. An R code for the 

above simulation is available from the authors.  

All the four methods were applied to the simulated data. Differentially expressed genes were 

identified based on the methods’ estimated FDR values. A gene was differentially expressed if 

its estimated FDR was less that a pre-specified value α. Power was calculated as the ratio of the 

number of correctly identified differentially expressed genes, true positives (TP), to the total 

number of truly differentially expressed genes, 50 [19]. 4. APPLICATION  

The four methods were applied to the melanoma cell lines dataset to identify DEGs. The 

genelists generated by the four methods were then applied to an independent melanoma dataset 

for prognostic assessments. Below are the descriptions of the datasets used in the application. 

4.1. Data  

Melanoma Cell Lines Dataset The gene expression data (raw intensities) consists of 54 cell-lines 

(35 melanoma cell lines and 19 normal human melanocytes (NHMs)), each with 45,015 probes. 

This data is publicly available from Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE40047. Only the melanoma cell 

lines were analyzed. The raw dataset was median-normalized and log2, transformed. If multiple 

probes mapped to the same gene symbol, they were reduced to one per gene symbol by using the 

most variable probe(set) measured by interquartile range (IQR) across arrays. Filtration and 

normalization of the gene expression data was implemented using BRB ArrayTools software 

[16]. A gene was filtered out if less than 20% of its expression data values had at  

least 1.5-fold change in either direction from the genes median value. Genes with more than 50 

% missing data across all its samples were also filtered out. There were 3,860 genes available for 

subsequent analysis.  

G2 Checkpoint Function Having obtained the gene expression data, we needed to quantify the 

biological process in melanoma progression. We selected the G2 checkpoint function in this 

regard. The G2 checkpoint is a position of control in the cell cycle that delays or arrests mitosis 

when DNA damage by radiation is detected. The G2 checkpoint prevents cells with damaged 

DNA cell from entering mitosis, thereby providing the opportunity for repair and stopping the 

proliferation of damaged cells. Figure 1 below shows the four phases of the cell cycle, including 

the location of the G2 checkpoint as the last checkpoint before mitosis. The G2 checkpoint 

function scores were obtained from Kaufmann’s lab (UNC - Pathology and Lab Medicine) and 



had been calculated as ratios of mitotic cells in 1.5 Gy ironizing radiation (IR)-treated cultures in 

comparison to their sham-treated control (i.e. IR to sham ratio) [20]. It had been shown in Omolo 

et al. [20] that the G2 gene signature was prognostic for the development of distant metastasis, 

hence the choice of G2 checkpoint function for this study.  

  

Figure 1: Cell cycle. After completing DNA synthesis and progression through the G2 phase, the 

cell enters the mitotic phase, where the chromosomes segregate into two daughter cells. Image 

downloaded from http://www.bristol.k12.ct.us/ page.cfm?p=7093.  

Independent Melanoma Dataset An independent data set, consisting of gene expression data 

from 6307 genes on 58 primary  
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melanomas with survival outcome, was obtained for assessing prognosis of the gene signatures 

from the four methods. This dataset has been reported in [21] and will hereafter be referred to as 

the Winnx dataset. This data is publicly available in the Array Express data repository at the 

European Bioinformatics Institute (http://www.ebi.ac.uk/arrayexpress/) under the accession 

numbers: E-TABM-1 IGR_MELANOMA_ STUDY. The primary endpoint for the study was a 

4year distant metastasis-free survival (DMFS), which was defined as the time interval between 

the diagnosis of the primary cutaneous melanoma and a distant metastasis or death from 

melanoma within 4 years. Patients alive at the date of last follow-up were censored at that date. 

Patients were also separated into two groups, one group with distant metastasis-free survival of 

more than 4 years (group M-) and one group with distant metastasis-free survival of 4 years or 

less (group M+). 4.2. List of DEGs  

To find DEGs, we applied different software for different methods. For the LIMMA approach, 

we used the limma R package. We fixed the degrees of freedom for the design matrix to be 5. 

For the SAM approach, the samr R package was used. ! was fixed at 0.00, to allow a large list of 

DEGs to be generated at different estimated FDR values. The number of nearest neighbors to use 

for imputation of missing features (knn.neighbors) was set at 10 and the number of permutations 

was fixed at 1000. The QTA method assessed significance of correlation based on the 

Spearman’s correlations and implemented the procedure using the BRB-ArrayTools software. 

Similarly, the LPC method was implemented by the BRB-ArrayTools software. The number of 

DEGs were generated at various levels of estimated FDR threshold (0.01, 0.05 ,0.1, 0.2) for all 

the methods. 4.3. Prediction and Prognosis  

We assessed the predictive quality of each of the genelists by its mean squared error (MSE) of 

prediction of the G2 checkpoint function. For this, linear models containing significant genes 

were formulated. Since G>>n, the least absolute shrinkage and selection operator (LASSO) 

algorithm [22] was used to select genes to include in the models. LASSO builds a sequence of 

models containing upto n genes and index by F, the number of algorithmic steps relative to the 

model containing n genes (full model). For each F, a cross-validation estimate is obtained using 

the leave 



one-out cross-validation (LOOCV) method. The final model selected corresponds to the F-value 

with the minimal estimated mean squared error.  

We performed a survival risk prediction (SRP) to assess the clinical significance of the genelists 

using the Winnx dataset. The clinical outcome for this dataset was 4-year distant metastasis-free 

survival (DMFS) and the objective was to predict a patient’s risk (low/high) for developing 

distant metastasis within 4 years of primary diagnosis. The SRP procedure entails first reducing 

the number of candidate genes to only the Cox ones, using the supervised principal component 

(SPC) method of [23]. These Cox genes are then used to compute the prognostic index for each 

sample. Samples (patients) with a prognostic index above the median are classified as high risk; 

otherwise, they are low risk. A log-rank test is performed to test if the two survival curves for the 

low- and the high -risk groups are significantly different, using the original DMFS values. A 

genelist would be prognostic for DMFS if the log-rank test is significant. The entire SRP 

procedure was implemented by a tool of the same name in BRB-ArrayTools software [16]. We 

compared the performance of the genelists produced by the four methods in survival risk 

prediction for the 58 samples in the Winnx dataset.  

In addition, we used the Prediction Analysis of Microarrays (PAM) tool to predict the group 

membership of the 58 samples. Samples were grouped into two classes: a group with distant 

metastasis-free survival of more than 4 years (group M-) and a group with distant metastasis-free 

survival of 4 years or less (group M+). PAM uses the shrunken centroid algorithm developed by 

[24]. This algorithm builds a number of linear models and selects the model with the least 

prediction error. A cross-validation estimate is obtained by using leave-one-out cross-validation 

(LOOCV). The entire model building process is repeated for each leave-one-out training set. The 

misclassification rate was calculated as the proportion of times the models incorrectly predict the 

class of the excluded samples. The genelist with the lowest misclassification rate was considered 

a good list for predicting a sample as belonging to group M+ or M-. 5. RESULTS AND 

DISCUSSION 5.1. Differentially Expressed Genes  

Each of the four methods was applied to the simulated data. The total number of genes that were  
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correctly identified as differentially expressed, true positives (TP), were recorded at different 

estimated FDR levels. With the known number of TP, the power was also calculated to aid in 

comparison. Table 1 shows the number of DEGs and power by different methods at different 

FDR levels. The LPC method turns out to be the least powerful of all the methods. The SAM and 

the QTA methods are the most powerful methods in the identification of DEGs. The LIMMA 

method has moderate power (>0.7) for the FDR thresholds considered, except at the FDR <0.01.  

Although the SAM and the QTA methods performed the best with the simulated dataset, we 

needed to determine how they perform on a real dataset. We applied the methods to the 

melanoma cell lines dataset (in 4.1). The results are different from the ones obtained using the 

simulated dataset. We observe that while the QTA method did well with the simulated dataset, 



its performance is the worst in the identification of DEGs using the real dataset. In terms of 

power, the SAM method is still the best followed by the LIMMA method.  

The difference in the performance of the QTA method when applied to the simulated and the real 

datasets could be explained by the fact that the simulated dataset is generated from a standard 

normal distribution. The QTA method strongly assumes that the gene expression levels (log2-

ratios) are normally distributed. Gene expression data may violate this assumption. The LPC 

method assumes that a large set of genes work together in a pathway to cause an outcome. In 

cases where this assumption is not met i.e. when only one gene or very few genes cause the 

outcome, the LPC method loses power in selecting significant genes. This could explain the low 

performance of the LPC method in both simulated and real datasets. One disadvantage of the 

LPC method is that it does not rank genes using a metric that is relevant or truly of interest. It 

rather finds genes that generate high values when standard scores are  

projected into a high-variance subspace of the gene expression data [15].  

Since different spots on the microarrays are assumed to contain different probes (in the case of 

cDNA arrays) or different oligos (in the case of highdensity oligonucleotide arrays), the 

expression of genes are assumed independent on these spots, even though some probes may 

represent the same gene and have dependent expression profiles. Consequently, not all the 

methods for selecting DEGs assume that the genes are independent. In particular, the LPC 

method does not assume that the genes are independent, while the SAM and the QTA methods 

do assume independence. While the LIMMA approach assumes independence, it works well 

when the genes are assumed dependent as well [13]. This has been one of the main differences 

among the four methods.  

Before analyzing the validation datasets, the gene expression data were filtered and normalized 

to eliminate genes that were not sufficiently differentially across the samples and to correct for 

sample-specific bias (due to experimental artefacts/errors) and render the samples comparable, 

respectively. After normalization, the resulting expression data was log2transformed so as to 

achieve a symmetric error distribution. Supplementary Figure F1 shows the error distribution for 

four randomly selected melanoma cell lines and primary tumors as symmetric and can be 

regarded as “approximately" normal.  

Figure 2 Shows the number of overlapping genes from the four methods. It is very common to 

find a very low number of overlapping DEGs between multiple methods [4, 25]. 5.2. Prediction 

and Prognosis  

We used the genelists generated by the four methods to build linear predictive models for the G2 

checkpoint function, via the LASSO with LOOCV. Table 2 provides a summary of the results. 

The QTA genelist  

Table 1: Number of DEGS Generated by the SAM, LIMMA, LPC and QTA Methods at 

Different Levels of Estimated FDR (α). The Power of the Methods are Shown (in Parenthesis), 

Based on the Simulated Dataset  

 Simulated dataset   Melanoma dataset   



α  

 SAM   LIMMA   LPC   QTA   SAM   LIMMA   LPC   QTA  .01   49 (0.98)   6 (0.12)   0 (0.00)   

50(1.00)   0   8   3   0  .05   52 (1.00)   39 (0.74)   0 (0.00)   51(1.00)   33   16   4   0  .1   53 (1.00)   

50 (0.88)   0 (0.00)   54 (1.00)   33   22   7   4  .2   56 (1.00)   57 (0.82)   0 (0.00)   67 (1.00)  173   

55   24   56   
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turns out to be the best in predicting G2 followed by the SAM genelist, then the LIMMA 

genelist. In order to get additional insight into the performance of the four methods, the four 

genelists were combined to get 52 unique genes. This combined genelist yielded an R2 of 0.506. 

A combination of all the genelists had a much better performance than most of the genelists 

generated by the individual methods.  

Gene expression data for the four genelists were extracted from the Winnx dataset for 

performing survival risk prediction. The difference between the survival curves for the low- and 

high -risk groups is significant for the SAM genelist (log-rank ! 2 =.5,p=0.019), the LPC genelist 

(log-rank ! 2 =5.7,p=0.0166) and the QTA genelist (log-rank ! 2 =4.8,p=0.0374) but not for the 

LIMMA genelist (log-rank ! 2 =0.1,p=0.791). Results are shown in Figure 3.  

We further subjected the combined genelist to a survival risk prediction analysis using the 

Winnix dataset. This genelist provides a good prediction of the G2 checkpoint function and is the 

most prognostic genelist (log-rank ! 2 = 8.5, p = 0.00351, Figure 4). We also observe that the 

misclassification rates based on PAM analysis are high for all the genelists. The misclassification 

rates are as follows: 36%,41%, 31% and 36% for the SAM, LIMMA, LPC and QTA methods, 

respectively (Table 3). 6. CONCLUSION  

In this study, we compared four methods (SAM, LIMMA, LPC and QTA) for identifying DEGs 

in terms of their power to detect differential gene expression, the predictive ability of the 

genelists for a continuous outcome, and the prognostic properties of the genelists for DMFS. One 

simulated dataset and two publicly available datasets from melanoma studies were used  

  

Figure 2: Number of overlapping genes from the SAM, the LIMMA, the LPC and the QTA 

genelists based on the melanoma cell lines dataset.  

  

Table 2: Comparison of G2 Checkpoint Function Prediction by the SAM, LIMMA, LPC and 

QTA Genelists Generated at α = 0.1. The Number of Genes Associated with DMFS (Cox Genes) 

are also Included  

Method  # Genes in model  r p  R2   Adjusted R2   # Cox genes   

SAM   10   0.652   <0.001   0.43   0.193   5  LIMMA   6   0.550   0.0006   0.3   0.150   1  LPC   3   

0.421   0.0117   0.18   0.100   1  QTA   4   0.721   <0.001   0.52   0.456   1  Combine   16   0.710   

<0.001   0.5   0.105   6   
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Figure 3: Kaplan-Meier curves for the low- and high-risk groups, generated by A. the SAM 

genelist, B. the LIMMA genelist, C. the LPC genelist, and D. the QTA genelist.  

in this regard. Results show that the selection of the DEGs heavily depends on the choice of the 

gene selection method. This may be due to the assumptions made by different methods. The 

LIMMA method assumes that the null distribution of the test statistics is the same for all genes. 

The QTA approach depends heavily on the normality and linearity assumptions, and the SAM 

method, in case of two groups scenario, assumes equal variance. Therefore, to obtain the reliable 

results for detecting significant genes in microarray data analysis, we need to explore the 

characteristics of the data and then apply the most appropriate method under the given situation.  

In addition to finding DEGs, it is also important to assess the biological and clinical importance 

of these genelists. One way of doing this is by identifying gene  

signatures that are better predictors of a quantitative outcome or a patient’s survival. This may 

help in tailoring therapeutic strategies to a single patient rather than the one-size-fits-all 

paradigm. Results from this study have shown that the combined genelist is more accurate in 

separating melanoma patients into high/low risk groups for developing distance metastasis. 

While the SAM approach was more powerful in terms of the number of significant genes 

detected using real dataset, the genelist generated by the QTA approach performed better in 

terms of prediction. Therefore, the QTA method would be preferred over the other approaches in 

predicting a quantitative outcome.  

Omolo et al. [20] employed the QTA method (together with a Bayesian procedure) to identify 

165 genes that were associated with the G2 checkpoint  
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function in melanoma lines. Some of these genes were found to be expressed differentially in 

wild-type (WT), NRAS-mutant and BRAF-mutant melanoma lines, through RNA expression 

analysis. This 165-list was also prognostic for distant metastasis-free survival in primary 

melanomas. Our SAM-list (n=33), LIMMA-list (n=22), LPC-list (n=7) and QTA-list (n=4) had 

ten (10), three (3), three (3) and one (1) genes in common with the 165 gene list, respectively. 

Kaufmann et al. [26] showed that some of the genes correlated with chromosomal instability 

(n=190), obtained using the QTA and a Bayesian method, were linked to amplification or 

deletion of the gene, e.g. DDR2. Our SAM-list and the LIMMA-list had two (2) genes each in 

common with the 190-list, which included DDR2. Thus, some of the DEGs by the proposed 

statistical methods in this manuscript have been biologically validated to be true positives (TP) in 

recent studies.  



Future work should focus on the development of more methods for differential gene expression 

analysis, since none of the methods discussed in this work and other existing survey papers is 

recommended as the  

“gold-standard". Our study was limited to the two microarray datasets from melanoma research, 

but the results would still hold when multiple datasets are considered. 
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