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Abstract

This study examines the ability of the Markov Regime Switching GARCH

model, in comparison with the univariete GARCH models, in modelling and

forecasting price volatility of the tea traded at the Mombasa Tea Auction,

within some time horizon. The study uses weekly data, from 2010 to 2017, to

analysis regime switching in volatility and provides an in-sample and out-of-

sample forecast. Volatility regime switching is first modelled with a Markov

switching framework. In-sample and out-of-sample forecasts of volatility us-

ing competing MRS-GARCH models and the single regimes GARCH models

are then provided. Comparison of in-sample forecast is done on the basis

of goodness-of-fit and the comparison of the out-of-sample forecasts is done

on the basis of forecast accuracy, using the statistical loss function. The

results show that the MRS-GARCH models can remove the high persis-

tence of GARCH models. This shows the priority of MRS-GARCH mod-

els and provides evidence of regime clustering. In out-of-sample forecast

perfomance, the MRS-GARCH models were better than the single regime

GARCH model. However, this superioirity fades for longer time horizon.

Keywords: Volatility, Markov Regime Switching GARCH, GARCH, exponential

GARCH, GJR-GARCH, Persistency, In-sample forecast, Out-of-sample forecast.
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Chapter 1

Introduction

Greater effort has been directed towards modelling volatility for financial time

series. This has to be done taking in consideration the stylized fact, especially

high persistence in the autocorrelation of squared observations and leptokurtosis

(Taylor, 2008). The two main classes in which volatility can be modelled are the

generalized autoregressive conditional heteroscedasticity (GARCH) and stochas-

tic volatility method. The stochastic volatilty model can be assumed to be more

flexible than the GARCH model since it allows for two error processes unlike the

GARCH model that uses a single error process. However, Hafner & Preminger

(2010) preferred the GARCH model when they compared the ability of the two

models in fitting the characteristic features observed in high frequency financial

data. The likelihood function of the stochastic volatility is usually intractable.

This prohibits direct evaluation of the model.

Hamilton (2010) studied Markov regime in markets resulting from dramatic breaks

in the time series. Hillebrand (2005) indicate that a distinct error occurs in the

GARCH parameters estimates if regime change is not taken into consideration.

Markov regime switching GARCH (MRS-GARCH) models belong to a class of

models proposing that volatility is characterized by structural changes driven by

a Markov chain. GARCH model has been widely used to model volatility. MRS-

GARCH model allows the parameters of a GARCH model to change over time in

order to allow for structural changes in a data series.

Little has been done on application of the MRS-GARCH in agricultural com-

modities since most research have focused on the traditional investments, stocks,
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currencies and interest rates, and energy commodity. Agirculture plays a key role

in most under-developed and developing economies. Structural models used to

analyse commodity markets are based on microeconomics and econometrics the-

ories that require model specification, estimation and simulation. A challenges

with the structural models is dealing with uncertainty in the markets. Greater

concerned being macroeconomic influences. Levels of production of agricultural

commodities play a significant role in determination of their prices and volatil-

ity. Agricultural commodity prices respond quickly to expected changes in supply

and demand conditions. Schnepf (2005) highlight three characteristics that set

them apart from most volatile prices of non-farm goods and services. The char-

acteristics are seasonality of production, the derived nature of their demand and

price-inelastic demand and supply functions. Schnepf (2005) further indicate that

the speed and efficiency with which the various price adjustments occur depend

largely on the market structure within which a commodity is being traded.

Tea and coffee are the only products that are traded in organized exchanges in

Kenya. Tea is traded at the Mombasa Tea Auction and has been the country’s

leading foreign exchange earner. Using the prices of tea, one can be able to review

the application of the MRS-GARCH model in a commodity market. Kenya is the

third leading producer of black tea in the world and the largest exporter of tea

in the world (Chang, 2015). The East African Tea Traders Association (EATTA)

brings together players in the tea value chain and is the umbrella under which

the Mombasa Tea Auction is conducted. Auctions are held weekly with the main

grades auction being held on Tuesdays and secondary grades auction being held

on Mondays. Mombasa Tea Auction is second largest black tea auction center in

the world and it is located in a region where production is throughout the year.
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Volatility in commodities is not directly observable, however it exhibits features in

the returns. Mandelbrot (1963) noted the existance of volatility clustering, large

changes tend to be followed by large changes, and small changes tend to be fol-

lowed by small changes. In addition, volatility evolves over time in a continuous

manner implying that jumps are rare. This means that volatility is often station-

ary, it does not diverge to infinity. Finally, volatility seems to react differently to

a big price increase or a big price drop. This is referred to as the leverage effect.

These properties indicate that evolution of the variance can be determined using

an exact function.

Engle (1982) developed the first model that provides a systematic framework for

volatility modelling, known as the ARCH model. The basic idea of ARCH models

is that the innovations of an asset return is serially uncorrelated, but dependent,

and the dependence can be described by a simple quadratic function of its lagged

values. Tsay (2005) highligted several weakness with the ARCH model: the model

assumes that positive and negative shocks have the same effects on volatility; the

ARCH model is restrictive which limits the ability of ARCH models with Gaussian

innovations to capture excess kurtosis; the ARCH model does not provide any new

insight for understanding the source of variations of a financial time series; and,

ARCH models are likely to overpredict the volatility because they respond slowly

to large isolated shocks in the retrun series. Another limitation is that the ARCH

models are linear in the squares of innovations. Some sort of nonlinearity may

need to be accommodated (Friedman et al., 1989).

Bollerslev (1986) proposed the generalized ARCH (GARCH) model to reduce the

number of parameters that adequately describe the volatility process in an ARCH

model. Apart from reducing the number of parameters, the GARCH models en-
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counters the same weaknesses as the ARCH model. To overcome some weaknesses

of the GARCH model, in particular to allow for asymmetric effects between posi-

tive and negative returns, in handling financial time series, Nelson (1991) proposes

the exponential GARCH (EGARCH) model. Another volatility model commonly

used to handle leverage effects is the GJR-GARCH model (Glosten et al., 1993).

Elliott et al. (1998) assume that the volatility of the assets is driven by some com-

mon states in the economy. The states were unobservable and can be represented

by a hidden Markov chain. Following the arguments of Schwert (1989), this study

seek to come up with a MRS-GARCH model that can be used to model volatility

for the price of tea traded at the Mombasa tea auction. Forecasted volatility when

applied to the mean equation of a time-series can be used to obtain future prices

of tea traded at the auction. The performance of the MRS-GARCH model is

then compared with the performance of other single-regime GARCH models. The

single-regime models considered are the GARCH, EGARCH and GJR-GARCH

models. The comparison is in terms of both the in-sample and out-of-sample fit.

This study’s addition to existing literature, on the application of the MRS-GARCH

model, will be in three fold. The focus on the Mombasa tea auction will provide

an insight to the specific tea market. Time of investigation is until June 2017 with

an out-of-sample test that covers upto December 2017. This was a recent period

and therefore unique. Furthermore, by limiting the data used to be based on a

single commodity type, in this case tea, it increased the chance of distinguishing

the superiority of the model since there might be different models that are best at

forecasting the volatility of the different commodities or asset types. The results

from the study could also be beneficial in the market. Out-of-sample perfomance

is critical for real world perfomance. By comparing various volatility models, a
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better model for risk management can be recommended. This will be useful in de-

termining appropriate level inventories to hold, and the best time to come into the

market ofr traders. Volatility modelling is also instrumental for traders of volatil-

ity related products, such as options, once such an exchange becomes operational.

The thesis is arranged as follows: Chapter 2 provides a theoritical framework

for the single-regime GARCH and the MRS-GARCH models, estimation of MRS-

GARCH models and a basis for comparing models. Chapter 3 highlights the

methodology applied to the study. Chapter 4 describes the data and the corre-

sponding return series is decomposed to obtain the trend, the cyclic and residual

components. The parameters of the single-regime GARCH and MRS-GARCH

models are estimated in Chapter 5. Chapter 6 compares the perfomance of the

MRS-GARCH with other single-regime GARCH models using both the in-sample

and out-of-sample forecasts. The final section offers some concluding remarks and

recommends areas for future work.
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Chapter 2

Literature Review

There are various models built on regime changes. Schwert (1989) highlight the

fluctuation of aggregates stock returns with either a high or low variance, with the

switches between the states is determined by a two-state Markov process. Hamil-

ton & Susmel (1994) and Cai (1994) explored the possibility of changing volatility

and allowed the parameters of an autoregressive conditional heteroskedasticity

(ARCH) process to come from one of several different regimes, with transitions

between regimes governed by an unobserved Markov chain in order to take into

account sudden changes in the level of the conditional variance. Regime switching

in the volatility of returns have been found by Hamilton & Susmel (1994), Hamil-

ton & Lin (1996), Edwards & Susmel (2001), and Kanas (2005).

Gray (1996) proposes a tractable regime-switching GARCH models for short-term

interest rates with time-varying probability, but estimates an approximation to

the model. Modifications to this model have been suggested by Haas et al. (2004),

Dueker (1997), Klaassen (2002) and Bollen et al. (2000). Abramson & Cohen

(2007) gives stationarity conditions for some of the tractable models.

The MRS-GARCH model has been applied in several studies. Bauwens et al.

(2006) used the NASDAQ daily return series to develop a regime-switching uni-

variate GARCH model with a time-varing probability of switching between a non-

explosive regime and an explosive one. Zhang et al. (2015) evaluated the forecast

performance of single-regime GARCH models and the two-regime Markov Regime

Switching GARCH model for crude oil price volatility. The results indicate that the

two-regime MRS-GARCH model beats the single-regime GARCH type models and
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nonlinear GARCH models exhibit greater accuracy than the linear GARCH model.

Reher et al. (2011) combines Gray (1996) and Klaassen (2002) Markov-switching

framework with Hentschel (1995) approach of nesting alternative single-regime

GARCH models to establish a two-regime Markov-switching GARCH model which

enables estimation of functional GARCH specifications within each regime.

This section gives a theoretical background for the MRS-GARCH model. This

includes definition of the common conditional distribution of the standardized

innovations in each regime. The section starts with the single-regime GARCH

models as the foundation for MRS-GARCH model. Stochastic volatility model,

as an alternative in volatility modelling, is also discussed. This section further

indicates the estimation options available and how models can be compared.

2.1 Single-Regime GARCH Models

The ARCH model, developed by Engle (1982), was the first framework to model

volatility. Volatility is modelled as a deterministic function. Consider a return

series, rt = µt + at, where µt is conditional mean of the series and at are the inno-

vations at time t. An ARCH models has at serially uncorrelated, but dependent.

The dependence of at is indicated in Equation (2.1). An ARCH(n) model has the

form

at = σtεt, and σ2
t = α0 + α1a

2
t−1 + ...+ αna

2
t−n, (2.1)

where σ2
t is the conditional variance of the series, εt are independent and identi-

cally distributed random variables with zero mean zero and unit variance, α0 > 0,

and αi ≥ 0 for i > 0.
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Bollerslev (1986) proposed the generalized ARCH (GARCH) model to reduce the

number of parameters that adequately describe the volatility process in an ARCH

model. A GARCH(n, s) model has the innovations, at, in the form

at = σtεt, and σ2
t = α0 +

n∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j, (2.2)

where εt are indepedent and identically distributed random variables with zero

mean and unit variance, α0 > 0, αi ≥ 0, βj ≥ 0, and
∑max(m,s)

i=1 (αi + βj) < 1.

The constraint on αi + βj implies that the unconditional variance of at is finite

and the conditional variance evolves over time. As before, εt is often assumed to

have a standard normal or standardized Student-t or generalised error distribu-

tion. The GARCH(n,s) model will reduce to an ARCH(n) model when s = 0. αi is

referred to as the ARCH parameter and βj is referred to as the GARCH parameter.

Nelson (1991) developed the exponential GARCH (EGARCH) model to allow for

asymmetric effects between positive and negative asset returns. This was a limi-

tation of the GARCH model. The EGARCH model has a weighted innovation in

the form

g(εt) = θεt + γ[|εt| − E(|εt|)], (2.3)

where θ and γ are real constants. Both εt and |εt|−E(|εt|) are zero-mean identically

and independent distribution sequences with continuous distributions. Therefore,

E[g(t)] = 0. The asymmetry of g(t) can easily be seen by rewriting it as

g(εt) =

(θ + γ)− γE(|εt|) , if εt ≥ 0

(θ − γ)− γE(|εt|) , if εt < 0.

(2.4)

An EGARCH(n, s) model can be written as

at =σtεt, ln(σ2
t ) = α0 +

1 + β1B + ...+ βs−1B
s−1

1− α1B − ...− αnBn
g(εt−1) (2.5)
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where α0 is a constant, B is the back-shift (or lag) operator such that Bg(εt) =

g(εt−1), and 1 +β1B+ ...+βs1B
s−1 and 1−α1B− ...−αnBn are polynomials with

zeros outside the unit circle and have no common factors.

Another volatility model commonly used to handle leverage effects is the GJR-

GARCH model Glosten et al. (1993). A GJR-GARCH(n, s) model assumes the

form

σ2
t = α0 +

s∑
i=1

(αi + γiNt−i)a
2
t−i +

n∑
j=1

βjσ
2
t−j (2.6)

where Nt−i is an indicator for negative at−i, that is,

Nt−i =

1 , if at−1 < 0

0 , if at−1 ≥ 0

(2.7)

and αi, γj, and βj are non-negative parameters satisfying conditions similar to

those of GARCH models. From the model, it is seen that a positive at−i contributes

αia
2
t−i to σ2

t , whereas a negative at−i has a larger impact (αi + γi)a
2
t−i with γi > 0.

The model uses zero as its threshold to separate the impacts of past shocks.

σt = α0 +
s∑
i=1

(αi + γiNt−i)a
2
t−i +

m∑
j=1

βjσt−j. (2.8)

Negative returns have a greater influence on future volatility than do positive

returns. This leverage effect is reflected in the EGARCH and GJR-GARCH mod-

els. From equations (2.6) and (2.7), the value of Nt−i captures the leverage effect

in the GJR-GARCH model. A positive error will have a weight of 0 and a negative

one will be assigned a weight of 1.
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2.2 Markov Regime Switching GARCH Model

An MRS-GARCH process, {yt}, for t = 1, ..., T , has the form:

yt = εt

with

εt = ηt
√

(ht(∆t)).

ηt is an identically and independently distributed random variable with zero mean

and unit variance and there exist α0(∆t), αi(∆t), i = 1, ..., q and γl(∆t), l = 1, ..., p

such that

ht(∆t) = α0(∆t) +

q∑
i=1

αi(∆t)ε
2
t−i +

p∑
l=1

γl(∆t)ht−l. (2.9)

∆t is a variable indicating the state at time t and follows a Markov chain with finite

state space S = 1, ..., k, and a transition matrix P . The probability of switching

from between regimes depend on the transition matrix, P, indicated below

P =


p11 p12 p13 . . . p1k

p21 p22 p23 . . . p2k
...

...
...

...
...

pk1 pk2 pk3 . . . pkk


with pij = p(∆t = j | ∆t−1 = i) the probability of being in state j at time t given

state i at time t− 1.

Calculation of the likelihood function for such a sample is not feasible. The quasi

maximum likelihood method can then not be used to estimate the model since

it requires the integration of kT possible regime paths where k is the number of
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regimes (Hamilton & Susmel, 1994) (Cai, 1994). To circumvent the path depen-

dence problem, Gray (1996) substitutes ht−1 with the conditional variance of the

error term εt−1 given the information up to time t− 2:

ht(∆t) = α0(∆t) + α(∆t)ε
2
t−1 + γ(∆t)

i=1∑
k

p(∆t−1 = i | Ωt−2)hi,t−1. (2.10)

The model of Haas et al. (2004) contrasts with this approach because each specific

conditional variance depends only on its own lag,

ht(∆t) = α0(∆t) + α(∆t)ε
2
t−1 + γ(∆t)ht−1(∆t). (2.11)

This model can be rewritten in matrix form:

ht = α0 + α1ε
2
t1 + γht1,

where α0 = [α01, α02, ..., α0k]
′, α1 = [α11, α12, ..., α1k]

′ and γ = diag(γ1, γ2, ..., γk).

ht is thereby a vector of k × 1 components. These MS-GARCH models can be

easily estimated by Maximum Likelihood (ML) estimation following the work of

Hamilton & Susmel (1994).

In a GARCH(1,1) model, persistence of a shock to the conditional variance is indi-

cated by the sum of α and γ. An estimated that is close to one indicates a highly

persistent volatility process. Mikosch & Stărică (2004) indicate that high persis-

tence in the volatility process may be due to structural changes on the parameters

of the model over a period of time due to different regimes. The MRS-GARCH

allows for regime changing of the parameters.

The MRS-GARCH model can be interpreted as a Markov chain with transition

kernel that is a mixture of distributions. Some of the assumptions are.

A1 ηt is identically and independently distributes and has a continous positive
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density on R with E(ηt) = 0 and V ar(ηt) = 1.

A2 αj > 0 and γj > 0 for j = 1, 2, ..., n.

A3 β1 + γ1 < 1 i.e. the first regime is stable.

Assumtion A1 is standard and is satisfied in commonly used distributions for

GARCH models. Assumption A2 is slightly stronger than the usual non-negative

conditions (γst ≥ 0, βst ≥ 0).

2.2.1 Conditional distribution

Model specification is completed by the definition of the conditional distribution

of the standardize innovations ηt,k in each regime of the Markov chain. The most

common distributions employed to model financial logreturns are the normal dis-

tribution, the Student-t distribution and GED distribution. Each distribution is

standardized to have a zero mean and a unit variance. The probability density

function (PDF) of the standard Normal distribution is given by:

fN(η) =
1√
2π
e−

1
2
η2 , η ∈ R. (2.12)

The normal distribution does not take into consideration the heavy tails of finan-

cial time series. This limits its application.

The PDF of the standardized Student-t distribution is given by:

fS(η; ν) =
Γ(ν+1

2
)√

(ν − 2)πΓ(ν
2
)

(
1 +

η2

(ν − 1)

) ν+1
2
, η ∈ R (2.13)

where Γ() is the Gamma function. The constraint ν > 2 is imposed to ensure that

the second order moment exists. The kurtosis of this distribution is higher for

lower ν. The probability density function is symmetric and the degrees of freedom

will determine distribution at the tails.
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The PDF of the standardized generalized error distribution (GED) is given by:

fGED(η; ν) =
νe−

1
2
|η/λ|η

γ2(1+1/η)Γ(1/η)
, λ =

( Γ(1/ν)

41/νΓ(3/ν)

) 1
2
, η ∈ R (2.14)

where ν > 0 is the shape parameter. GED is a symmetrical distribution defined

by three parameters indicating the mode of the distribution, dispersion of the

distribution and the shape parameter that controls the skewness.

2.3 An Alternative of the MRS-GARCH Model

An alternative of the GARCH-type models is the family of stochastic volatility

models where volatility is assumed to follow a stochastic process. An example

is a model proposed by Heston (1993) where the underlying asset behavior is

characterized by the following risk-neutral dynamics

dSt
St

= rdt+
√
VtdW

1
t

dVt = a(V̄ − Vt)dt+ η
√
VtdW

2
t (2.15)

dW 1
t dW

2
t = ρdt

where

S is the price of the underlying asset at time t

r is the risk free rate

Vt is the variance at time t

V̄ is the long-term variance

a is the variance mean-reversion speed

η is the volatility of the variance process

dW 1
t , dW 2

t are two correlated Weiner processes, with correlation coefficient ρ
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This model exhibit some desirable financial time series properties. It models

volatility as a mean-reverting process which is consistent with financial markets be-

haviour. It introduces correlation on the shocks between asset returns and volatil-

ity. This allows modelling the statistical dependence between the underlying asset

and its volatility, which is a prominent feature of financial markets.

Due to intractability of the likelihood function in stochastic volatility models, other

methods other than maximum likelihood should be used. Harvey et al. (1994) and

Ruiz (1994) propose the quasi maximum likelihood. Monfardini (1998) propose for

the usage of indirect inference and Andersen et al. (1999) applies efficient method

of moments.

Elliott, Siu, et al. (2007) and Elliott, Kuen Siu, & Chan (2007) extend the Heston

model by incorporating regime switching in the volatilty process. They priced

volatility derivatives by using a mean reverting level of volatility governed by a

Marlov chain. Goutte et al. (2017) considers that a hidden Markov chain gov-

erns volality’s speed of mean reversion, the mean reversion level, the volatility of

volatility, and the correlation with the stock index in pricing S&P 500 and VIX

options. Regime switching stochastic volatility models have also been studied by

Biswas & Goswami (2017), So et al. (1998), and Exterkate et al. (2017). The

stochastic approach is applied in the risk-nuetral framework and that is why it is

usually used to price derivatives.

2.4 Estimation

Estimation of MRS-GARCH models can be done either by maximum likelihood

or by Markoc chain Monte Carlo (MCMC) Bayesian techniques. Both approaches

14



require the evaluation of the likelihood function.

Let Ψ = (α0,α1, γ, P ) be the vector of model parameters. The likelihood function

is:

L(Ψ|IT ) =
T∏
t=1

f(yt|Ψ, It−1) (2.16)

where f(yt|Ψ, It−1) denotes the density of yt given past observations, It1, and model

parameters Ψ. For MRS-GARCH, the conditional density of yt is:

f(yt|Ψ, It−1) =
K∑
i=1

K∑
j=1

pi,jzi,t−1fD(yt|st = j,Ψ, It−1), (2.17)

where zi,t1 = P [st1 = i|Ψ, It1] represents the filtered probability of state i at time

t− 1 obtained via Hamiltons filter (Hamilton & Susmel, 1994).

The ML estimator Ψ̂ is obtained by maximizing the logarithm of Equation (2.16).

In the case of MCMC estimation, we follow Ardia et al. (2008), by combining the

likelihood with a diffuse (truncated) prior f(Ψ) to build the kernel of the posterior

distribution f(Ψ|IT ). As the posterior is of an unknown form (the normalizing

constant is numerically intractable), it must be approximated by simulation tech-

niques.

2.5 Comparing model perfomance

A well-fitting model will result in the predicted values being close to the observed

data values. Forecast evaluation is key in evaluating the perfomance of a model.

Evaluation of competing volatility models can be difficult because, as remarked

by Bollerslev et al. (1994) and Lopez et al. (2001), there does not exist a unique

criterion capable of selecting the best model. According to Marcucci (2005) and

Wei et al. (2010), the real loss function has been used by several researchers to

evaluate volatility forecast. Instead of choosing a particular statistical loss function
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as the best and unique criterion, one can use different interepretations and can lead

to a more complete forecast evaluation of the competing models. The statistical

loss functions are:

MSE1 = n−1
n∑
t=1

(σ̂t+1 − ĥ
1
2

t+1|t)
2 (2.18)

MSE2 = n−1
n∑
t=1

(σ̂2
t+1 − ĥt+1|t)

2 (2.19)

QLIKE = n−1
n∑
t=1

(logĥt+1 + σ̂2
t+1ĥ

−1
t+1|t) (2.20)

R2LOG = n−1
n∑
t=1

[logσ̂2
t+1ĥ

−1 − t+ 1|t]2 (2.21)

MAD1 = n−1
n∑
t=1

|σ̂t+1 − ĥ
1
2

t+1|t| (2.22)

MAD2 = n−1
n∑
t=1

|σ̂2
t+1 − ĥt+1|t| (2.23)

where ĥt+1|t is the h-step volatility forecast and σ̂2
t+1 is volatility as time t+ h.

The criteria in equations (2.18) and (2.19) are typically mean squared error metrics.

The criteria in Equations (2.19) and (2.21) are equivalent to using the R2 metric

in the Mincer-Zarnowitz regression of σ̂2
t+1 on a constant ĥt+1|t and of log (σ̂2

t+1)

on a constant and log ĥt+1|t, respectively provided that the forecasts are unbi-

ased. Moreover, the R2LOG loss function has the particular feature of penalizing

volatility forecast asymmetrically in low volatility and high high volatility periods

as pointed out by (Pagan & Schwert, 1990) who put forward equation (2.20), call-

ing it logarithm loss function. The loss function in equation (2.20) corresponds

to the loss implied by a gaussian likelihood and is suggested by Bollerslev et al.

(1994). The Mean Absolute Deviation (MAD) criteria in equations (2.10) and

(2.11) are useful because they are generally more robust to the possible presence

of outliers than the MSE criteria, but they impose the same penalty on over- and

under-predictions and are not invariant to scale transformations.
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Chapter 3

Methodology

3.1 Data description

This study is about forecasting volatility associated with the price of tea at the

Mombasa Tea Auction. Weekly weighted average spot prices is used to obtain

the results as trading of the main grade takes place on Teusdays. The spot price

data range from early 2010 to end of 2017. The forecast power of the MRS-

GARCH model is evaluated on both in-sample and out-of-sample data, which is

then compared to the single regime GARCH-type models. Observations till end

of June 2017 are used as in-sample data for estimating the models, while the

remaining observations, to December 2017, are selected as out-of-sample data to

evaluate the forecasting performance. The data was obtained from the EATTA.

3.2 Decomposition of the time series

If Pt is the price at time t, the natural logarithm of the returns, rt, is calculated

for the price data.

rt = ln Pt − ln Pt−1 = pt − pt−1 (3.1)

Working with logarithm of returns, the additive model was used to decompose the

time series. From Equation (3.1), the resulting representation of the returns is:

rt = Tt + St + εt (3.2)

where Tt is the trend, St is the seasonality component and εt is the residual term.
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The trend is estimated using either the autoregressive or moving average tech-

niques. Estimation is done through maximum likelihood technique and examina-

tion of the goodness-of-fit determines the best fit.

When trend is remove form the series in Equation (3.2), the resulting series will

be as shown below:

rt − Tt = St + εt (3.3)

A parametric seasonal pattern in Equation (3.3) is genarated based on a sinusoidal

pattern. In this study, a sinusoidal function that has monthly and yearly compo-

nents is chosen. Global supply of tea is affected by colder and warmers time of the

year. Given that the Mombasa Tea Auction resides in a region where producion

is all year round, it is expected that the demand will be affected by the time of

the year, especially for periods when the other tea auctions in the would are not

operating. In addition, given that the ultimate consumer demand is determined

by the time of the month, tea demand will exhibit some monthly season pattern.

Like Erlwein (2008) in her application of hidden markov model to model electricity

prices, the seasonal component is be given by:

St =
3∑

h=1

(
d1hsin(sh

2π

50.5
t) + d2hcos(sh

2π

50.5
t)

+ d3hsin(sh
2π

4.21
t) + d4hcos(sh

2π

4.21
t)

)
(3.4)

for s1 = 1, s2 = 2 and s3 = 4 and the constants d1h, d2h, d3h, and d4h are to be

determined. The model in equation (3.4) assumes that a year has on average 50.4

weeks and a month has on average 4.21 weeks.
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The residuals can now be obtained by removing seasonality component from Equa-

tion (3.3)

rt − Tt − St = εt (3.5)

3.3 Estimation Markov Regime Switching GARCH (MRS-

GARCH) model

The resulting time series, yt = εt, has no trend and seanality components. This is a

zero mean process. The estimation of the MRS-GARCH model is tackled by max-

imum likelihood. The MRS-GARCH model is implemented according to Haas et

al. (2004) specification. This implies that there were 2 separate single-regime con-

ditional variance processes, possibly 2 separate conditional distributions, a Markov

chain dictating the switches between regimes and a zero mean process.

The normal distribution, the Student-t distribution and GED distribution are

considered for the conditional distribution of the standardize innovations ηt,k in

each regime of the Markov chain.

3.4 Evaluation criteria for forecast perfomance

From the dataset, GARCH(1, 1), EGARCH(1, 1), and GJR-GARCH(1,1) are es-

timated. Forecasts are generated from the models both in-sample and the out-of-

sample data.

Goodness of fit is used to evaluate in-sample forecast perfomance and the loss

functions as the evaluation criteria for the out-of-sample forecast performance.
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The loss functions used are the Mean Squared Error (MSE), and Mean Absolute

Error (MAE).
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Chapter 4

Data

The weekly weighted-average spot prices, Pt, is obtained from the weekly turnover

and volume as indicated in equation (4.1).

Pt =
week turnover

week volume
(4.1)

4.1 Tea Prices

Empirical studies on financial time series involve returns rather than prices. Camp-

bell et al. (1997) indicates why returns are preffered. In addition, the limited li-

ability assumption implies that gross returns have a lognormal distribution. This

makes their logarithm normally distributed. The weekly prices are transformed

into continuously compounded returns. This is done by taking the log differences

of the prices. Figure 1 highlights the price (in USD) and the weekly (log) return

series for the prices in the study period.

Descriptive statistics of the log return series are represented in Table 8 in Ap-

pendix A. As table shows, the commodity has a weekly average return of -0.0177 %

with a standard deviation of 3.7264%. The series also displays a positive skewness

of 0.257 and a kurtosis of 7.147. These values indicate that the returns are not

normally distributed, namely it has fatter tails. Also, p-value of the Shapiro-Wilk

normality test statistic confirms the non-normality of price returns.
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Figure 1: The graphs plots the price (in USD) and log returns for the main grade

tea that was traded in the Mombasa Tea Action from 2010 to 2017
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4.2 Return Series Decomposition

In order to analyse volatility of a commodity price, the time series is first decom-

posed to extract the trend and seasonality components.

The Akaike Information Criteria and log likelihood statistics are used in selecting

a trend model. Table 9 in the Appendix presents perfomance of various models.

ARIMA(2, 1, 3) is the best performing model under both criteria. Table 1 indi-

cate the parameters of the ARIMA(2, 1, 3) model.

Table 1: ARIMA(2,1,3) model parameters

ar1 ar2 ma1 ma2 ma3 intercept

estimate 0.3768 -0.9601 -0.286 0.9336 0.1517 -2.00e-04

s.e. 0.0175 0.0172 0.0532 0.0258 0.0534 2.00e-03

t-statistic 21.53143 -55.8198 -5.37594 36.18605 2.840824 -0.1

The sinusoidal function in Equation (3.1) is fit to capture seasonality on the resid-

uals of the ARIMA(2,1,3) model

St =
3∑

h=1

(
d1hsin(sh

2π

50.5
t) + d2hcos(sh

2π

50.5
t) + d3hsin(sh

2π

4.21
t) + d4hcos(sh

2π

4.21
t)

)
(4.2)

where

s1 = 1; s2 = 2; s3 = 4;

with d1h , d2h , d3h and d4h being the coefficients to be fitted.

The parameters for the sinusoidal function are indicated in table 10 in Appendix

A. The coefficient that are not significantly different from zero have been dropped

23



off.

Figure 2 shows the residuals series after extracting the trend and seasonality

components in the return series.

Figure 2: Residuals from the (log) return series after time series decomposition

4.3 Section summary

The logarithm of the return series has been obtained from the price series. The

resulting series is then decomposed where the trend and seasonality components

are extracted. ARIMA(2, 1, 3) gives the best fit for trend and a sinusoidal function

is used to capture seasonality. The residuals are applied to model volatility in the

subsequent sections.
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Chapter 5

Estimation of Model Parameters

This section uses maximum likelihood estimation to estimate the parameters for

the MRS-GARCH and single-regime GARCH models.

5.1 Single-Regime GARCH Models

The procedures are computed numerically by using the R Package rugarch.

Table 11 in Appendix B presents estimated parameters for the uniregime GARCH

models. From the table, and at 5% level of significance, the constant parameter is

significant for the EGARCH models with normal and GED innovations, the ARCH

parameter is significant for the standard GACRH models with GED innovations,

the GARCH parameter is significant for all the models and the asymmetry effect

term is significantly different from zero for the EGARCH model and not the GJR-

GARCH model. Asymmetry indicates negative returns have higher conditional

variance as compared to positive returns of similar size.

The degree of volatility persistence for GARCH models can be obtained by sum-

ming ARCH and GARCH parameters estimates (α1 + β1). For EGARCH (1, 1)

and GJR-GARCH (1, 1), persistence is equal to β1 and (α1 + γ1)/2 + β1 respec-

tively. All models display strong persistence in volatility ranging from 0.89 to 0.98.

This implies that once volatility has increase it tends to remain high.

If distribution assumptions for standardized errors are compared, it reveals that
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normality assumption is highly outperformed by other two fat-tailed distribu-

tions in terms of loglikelihood values apart from the EGARCH model. It is

an anticipated result because of the fat tails property of log reurns. Overall,

the EGARCH model with GED distribution has the largest log-likelihood among

uniregime GARCH models.

5.2 Markov Regime Switching GARCH Models

The resulting time series, yt = εt, has no trend and seasonality components. This

is a zero mean process. Estimation of the MRS-GARCH model is tackled by max-

imum likelihood. The MRS-GARCH model is implemented according to Haas

et al. (2004) specification and the procedures are computed numerically by using

the R Package MSGARCH. This implies that there were two separate single-

regime conditional variance processes, with two separate conditional distributions,

a Markov chain dictating the switches between regimes and a zero mean process.

The normal distribution, the Student-t distribution and GED distribution are con-

sidered for the conditional distribution of the standardize innovations ηt,k in each

regime of the Markov chain.

Estimation results and summary statistics of MRS-GARCH models are presented

in Table 2, Table 3 and Table 4. Almost all parameter estimates are significantly

different from zero atleast at 95% confidence level. The long term volatility level

depends on the estimates of constant parameter α0. Results are consistent with

this argument and display that there are huge differences between α0 estimates

of each volatility regime. The parameter estimates α0 in high volatility regimes

are considerably greater than parameter estimates α0 in low volatility regimes.

Moreover, short run dynamics of volatility is determined by the ARCH parameter
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α1 and GARCH parameter β1. Large estimates of α1 suggest that effect of shocks

to future volatility die out in a long time, so volatility is persistent. Large values

of α1 display reaction of volatility to the recent price changes.

Comparing the low and high volatility regimes in all MRS-GARCH models, the

former volatility regimes have higher α1 estimates and higher β1 estimates than

latter volatility regimes have, apart from some case where innovations in high

volatility regime have GED conditional distribution. So, the GARCH processes

in the low volatility regimes are more reactive and more persistent than that in

the high volatility regime. In addition, it is interesting to notice that in most

cases the degree of volatility persistence (α1 + β1) within low volatility regime is

higher compared to the high volatility regime. Persistence within each regime is

calculated as αi1 + βi1 where i = 1, 2.

5.3 Section summary

Table 11 in Appendix B presents parameters for the uniregime GARCH models.

Parameters of MRS-GARCH models are presented in Table 2, Table 3 and Table 4.

Important to note is that MRS-GARCH accurately describes the two regimes based

on the different pattern of adjustment of the returns volatility. Estimation of the

MRS-GARCH model indicates that the probability of stagnating within states is

high. In addition, the probability of low volatility regime being be followed by a

low volatility regime greater than the probability of a high volatility regime being

followed by a high volatility regime.
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Table 2: MRS-GARCH model with the low volatility regime having a normal

conditional distribution
Volatility regime Low volatility High volatility Low volatility High volatility Low volatility High volatility

Conditional distribution Normal Normal Normal Student-t Normal GED

α0

estimate 0.0002 0.006 0.0002 0 0.0002 0.0013

std. error 0 0.0065 0 0 0 0.0047

t-statistic 38.8127 0.9259 24.1814 9.8672 40.0562 0.2827

(> |t|) <1e-16 1.77E-01 <1e-16 <1e-16 <1e-16 3.89E-01

α1

estimate 0.143 0.0002 0.0488 0.3786 0.1523 0

std. error 0.0066 0.0006 0.0039 0.3938 0.0065 0

t-statistic 21.7091 0.3098 12.4229 0.9615 23.431 0.0655

t-statistic 21.7091 0.3098 12.4229 0.9615 23.431 0.0655

Pr(> |t|) <1e-16 3.78e-01 <1e-16 1.68e-01 <1e-16 4.74e-01

β1

estimate 0.6127 0.2121 0.7751 0.6213 0.6014 0.8136

std. error 0.0064 0.8508 0.0074 0 0.0063 0.6593

t-statistic 95.4001 0.2493 105.0808 84434.192 94.8401 1.2341

Pr(> |t|) <1e-16 4.02E-01 <1e-16 <1e-16 <1e-16 1.09E-01

df

estimate 5.6378 1.4473

std. error 0.131 0.0303

t-statistic 43.0442 47.8026

Pr(> |t|) <1e-16 <1e-16

p11 estimate

estimate 0.9948 0.8105 0.9951

std. error 0.0039 0.0128—— 0.0037

t-statistic 255.5282 63.173 265.5316

Pr(> |t|) <1e-16 <1e-16 <1e-16

p21

estimate 0.0796 0.38 0.0748

std. error 0.0003 0.0064 0.0003

t-statistic 282.1961 59.5095 284.5336

Pr(> |t|) <1e-16 <1e-16 <1e-16

LogLikelihood 746.5646 748.6227 746.8806

Persistence 0.7557 0.2123 0.8239 0.6213 0.7537 0.8136
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Table 3: MRS-GARCH model with the low volatility regime having a student-t

conditional distribution
Volatility regime Low volatility High volatility Low volatility High volatility Low volatility High volatility

Conditional distribution Student-t Normal Student-t Student-t Student-t GED

α0

estimate 0.0002 0.006 0.0002 0 0.0002 0.0013

std. error 0 0.0065 0 0 0 0.0047

t-statistic 38.8127 0.9259 24.1814 9.8672 40.0562 0.2827

Pr(> |t|) <1e-16 1.77e-01 <1e-16 <1e-16 <1e-16 3.89e-01

α1

estimate 0.143 0.0002 0.0488 0.3786 0.1523 0

std. error 0.0066 0.0006 0.0039 0.3938 0.0065 0

t-statistic 21.7091 0.3098 12.4229 0.9615 23.431 0.0655

Pr(> |t|) <1e-16 3.78e-01 <1e-16 1.68e-01 <1e-16 4.74e-01

β1

estimate 0.6127 0.2121 0.7751 0.6213 0.6014 0.8136

std. error 0.0064 0.8508 0.0074 0 0.0063 0.6593

t-statistic 95.4001 0.2493 105.0808 84434.192 94.8401 1.2341

Pr(> |t|) <1e-16 4.02e-01 <1e-16 <1e-16 <1e-16 1.09e-01

df

estimate 5.6378 1.4473

std. error 0.131 0.0303

t-statistic 43.0442 47.8026

Pr(> |t|) <1e-16 <1e-16

p11

estimate 0.9948 0.8105 0.9951

std. error 0.0039 0.0128 0.0037

t-statistic 255.5282 63.173 265.5316

Pr(>—t— <1e-16 <1e-16 <1e-16

p21

estimate 0.0796 0.38 0.0748

std. error 0.0003 0.0064 0.0003

t-statistic 282.1961 59.5095 284.5336

Pr(> |t|) <1e-16 <1e-16 <1e-16

LogLikelihood 746.5646 748.6227 746.8806

Persistence 0.7557 0.2123 0.8239 0.6213 0.7537 0.8136
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Table 4: MRS-GARCH model with the low volatility regime having a GED con-

ditional distribution
Volatility regime Low volatility High volatility Low volatility High volatility Low volatility High volatility

Conditional distribution GED Normal GED Student-t GED GED

α0

estimate 0.0002 0.0038 0.0002 0.0011 0.0002 0.0017

std. error 0 0.0391 0 0.0029 0 0.0046

t-statistic 34.1863 0.0976 34.7695 0.3813 37.7262 0.3682

Pr(> |t|) <1e-16 4.61e-01 <1e-16 3.52e-01 <1e-16 3.56e-01

α1

estimate 0.1187 0 0.1293 0 0.1369 0

std. error 0.0077 0.0004 0.008 0 0.0073 0

t-statistic 15.4579 0.056 16.1058 0.0797 18.8091 0.0739

Pr(> |t|) <1e-16 4.78e-01 <1e-16 4.68e-01 <1e-16 4.71e-01

β1

estimate 0.6333 0.4893 0.619 0.8371 0.6077 0.7612

std. error 0.0072 5.2355 0.0071 0.4272 0.0068 0.6486

t-statistic 88.1613 0.0935 86.6458 1.9593 89.3631 1.1735

Pr(> |t|) <1e-16 4.63e-01 <1e-16 2.50e-02 <1e-16 1.20e-01

df

estimate 2.2459 2.2253 5.1385 2.2161 1.4895

std. error 0.0164 0.0158 0.2644 0.0149 0.0315

t-statistic 137.0798 140.7271 19.4327 148.3549 47.2446

Pr(> |t|) <1e-16 <1e-16 <1e-16 <1e-16 <1e-16

p11

estimate 0.9933 0.9943 0.9951

std. error 0.0047 0.0042 0.0037

t-statistic 212.0432 236.3434 265.5316

Pr(> |t|) <1e-16 <1e-16 <1e-16

p21

estimate 0.0876 0.0779 0.0748

std. error 0.0004 0.0003 0.0003

t-statistic 228.5858 245.5163 284.5336

Pr(> |t|) <1e-16 <1e-16 <1e-16

LogLikelihood 746.9488 747.2084 746.8806

Persistence 0.752 0.4893 0.7483 0.8371 0.7446 0.7612
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Chapter 6

MRS-GARCH Model Perfomance

The data is divided into a six and a half year in-sample model estimation period

(379 observations) and a subsequent half year out-of-sample forecasting period

(25 observations). From the dataset, GARCH(1, 1), EGARCH(1, 1), and GJR-

GARCH(1,1) have been estimated. Forecasts are generated from the models both

in-sample and the out-of-sample data. Goodness of fit is used to evaluate in-sample

forecast perfomance and the loss functions is the evaluation criteria for the out-of-

sample forecast performance. The loss functions used are the Mean Squared Error

(MSE), and Mean Absolute Error (MAE).

6.1 In samples

Table 5 provides a summary of the goodness-of-fit statistics that are considered

in analysing the in-sample estimation performance of the volatility models. MRS-

GARCH model with normal and student-t conditional distribution for the low

and high volatility regimes respectively gives the best fit. All the MRS-GARCH

models rank above the single regime GARCH mdoels. Thus, evaluating in sample

estimation results according the goodness-of-fit statistics, the MRS-GARCH mod-

els perform better than single regimes GARCH models in describing the tea price

volatility. In addition, comparing persistence of single regime GARCH models and

MRS-GARCH models, it is observed that the high persistence in the former spec-

ification is reduced by latter models. This result indicates that high persistence in

volatility of GARCH models is caused by regime shifts in the volatility process.
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Table 5: In-sample evaluation

model
Conditional distribution of the

low volatility regime

Conditional distribution of the

high volatility regime
N Par Log(L) Rank

GARCH Normal 4 649.3951 18

GARCH Student-t 5 676.7214 16

GARCH GED 5 658.2845 17

EGARCH Normal 5 727.6112 11

EGARCH Student-t 6 709.4254 13

EGARCH GED 6 734.5286 10

GJR Normal 5 707.5468 15

GJR Student-t 6 711.9217 12

GJR GED 6 708.6446 14

MRS-GARCH

Normal Normal 8 746.5646 8

Normal Student-t 9 748.6227 1

Normal GED 9 746.8806 6

Student-t Normal 9 746.4203 9

Student-t Student-t 10 746.9982 4

Student-t GED 10 746.7436 7

GED Normal 9 746.9488 5

GED Student-t 10 747.5236 2

GED GED 10 747.2084 3

6.2 Out-of-Sample Evaluation

This section investigates the ability of MRS-GARCH models and the single regime

GARCH models to forecast tea price volatility at different future time horizons

using the daily squared forecast error as actual volatility. The forecast horizons of

1, 2, 3, 5, 10, 15, 20 and 25 weeks were considered. Table 6 and Table 7 present

the forecast errors in the volatility statistics.
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The MAE and MSE were used to evaluate the models. The error statistics are con-

sistent in there ranking. The forecast error statistics suggest that MRS-GARCH

models provide the most accurate volatility forecasts for 1-period ahead, and the

GARCH models were better at longer horizon (for 2-weeks to 25-weeks ahead).
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Chapter 7

Conclusion

The aim of this study is two fold. It seeks to develop a model to describe regime

switching in volatility of return for tea traded at the Mombasa tea Auction using

weekly data for the period between 2010 and 2017. This is achieved through a

MRS-GARCH model. The second aim is to compare the perfomance of the MRS-

GARCH model with other single-regime GARCH models. Several findings result

from the presented analysis. There is evidence of a regime switching GARCH

model in the volatility of tea prices. In addition, the estimation of the MRS-

GARCH describes the two regimes based on the different parameters; and the

estimated model captures all the events that are responsible for the presence of

nonlinear features in the returns. Moreover, regime clustering is observed. A low

volatility regime is more likely to be followed by a low volatility regime than for a

high volatility regime to be followed by a high volatility regime. Lastly, consider

several competing models to forecast returns volatility by obtaining the 1-, 2-,

3-, 5-,10-, 15-, 20- and 25- step ahead forecast and comparing the out-of-sample

performance of the models on the basis of forecasting accuracy by applying statis-

tical loss function, the results suggest that MRS-GARCH models has priority over

single regime GARCH models for a period ahead, and the single regime GARCH

processes bet the MRS-GARCH processes for longer time horizon.

For future work, Bayesian algorithm using a Gibbs sampling algorithm can be

used to estimate the MRS-GARCH model, as an alternative to maximum likeli-

hood estimation. Moreover, there are other techniques used to model volatility,

such as those governed by a stochastic equation. Markov regime switching can be

applied in such models.
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A Data

Table 8: Summary statistics for (log) returns

item name (log) returns

number valid 403

mean -0.000177

standard deviation 0.037264

median 0

trimmed mean 0.000203

mean absolute deviation 0.035024

minumum -0.21334

maximum 0.257377

skewness 0.267529

kurtosis 7.417612

standard error 0.001856

Shapiro-Wilk

normality test

W = 0.93642

p-value = 4.265e-12
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Table 9: Evaluating model perfomance for the trend

Model Log (Likelihood) Rank AIC Rank

ARIMA(1,1,0) or AR(1) 755.82 15 -1505.64 10

ARIMA(2,0,0) or AR(2 758.03 10 -1508.07 2

ARIMA(3,0,0) or AR(3 758.4 7 -1506.8 4

ARIMA(0,1,1) or MA(1) 756.15 14 -1506.29 7

ARIMA(0,1,2) or MA(2) 757.58 12 -1507.15 3

ARIMA(0,1,3) or MA(3) 758.38 8 -1506.76 5

ARIMA(1,1,1) or AR(1) MA(1) 756.71 13 -1505.43 11

ARIMA(1,1,2) or AR(1) MA(2) 757.96 11 -1505.92 8

ARIMA(2,1,3) or AR(1) MA(3) 758.53 6 -1505.06 13

ARIMA(2,1,1) or AR(2) MA(1) 758.26 9 -1506.53 6

ARIMA(2,1,2) or AR(2) MA(2) 758.91 4 -1505.83 9

ARIMA(2,1,3) or AR(2) MA(3) 763.19 1 -1512.39 1

ARIMA(3,1,1) or AR(3) MA(1) 758.57 5 -1505.14 12

ARIMA(3,1,2) or AR(3) MA(2) 758.95 3 -1503.89 14

ARIMA(3,1,3) or AR(3) MA(3) 759.08 2 -1502.16 15
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Table 10: Parameters for the sinusoidal function

Estimate Std. Error t value Pr(> |t|)

d0(= intercept) 1.34e-05 1.81e-03 0.007 0.9941

d11 -4.26e-03 2.56e-03 -1.665 0.0966

d21 -8.31e-04 2.56e-03 -0.324 0.7459

d41 -5.61e-04 2.56e-03 -0.219 0.8266

d12 1.95e-03 2.56e-03 0.761 0.447

d32 1.53e-03 2.56e-03 0.599 0.5495

d42 1.20e-03 2.56e-03 0.469 0.6392

d13 -4.69e-03 2.55e-03 -1.837 0.067

d23 -5.62e-04 2.57e-03 -0.219 0.8268

d33 8.93e-04 2.56e-03 0.348 0.7278

d43 1.25e-03 2.56e-03 0.488 0.6259
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B Single-Regime GARCH Model Parameters

Table 11: Parameters for the standard GARCH models
GARCH EGARCH GJR-GARCH

conditional distribution normal student-t GED normal student-t GED normal student-t GED

µ

estimate 0 0 0 0 0 0 0 0 0

std. error 0.004272 0.002245 0.003482 0.001955 0.001225 0.001793 0.03097 0.105047 0.067624

t-statistic 0 0 0 0 0 0 0 0 0

Pr(> |t|) 1 1 1 1 1 1 1 1 1

α0

estimate 0.000001 0.000001 0.000001 -0.62961 -0.77241 -0.66396 0.000001 0.000001 0.000001

std. error 0.000006 0.000002 0.000002 0.237781 0.637307 0.249642 0.000006 0.000003 0.000007

t-statistic 0.22299 0.79051 0.5991 -2.64786 -1.21199 -2.65966 0.23562 0.53675 0.207609

Pr(> |t|) 0.82354 0.42923 0.549109 0.0081 0.225518 0.007822 0.813729 0.59144 0.835534

α1
estimate 0.051124 0.052016 0.05117 0.009298 0.069662 -0.00117 0.050014 0.050013 0.050014

std. error 0.053796 0.010134 0.013237 0.056342 0.083204 0.048881 0.271332 0.94387 0.437512

t-statistic 0.95034 5.13279 3.8656 0.16503 0.83725 -0.02399 0.18433 0.052987 0.114314

Pr(> |t|) 0.34194 0 0.000111 0.868917 0.402455 0.980861 0.853758 0.957742 0.908989

β1

estimate 0.9002 0.90015 0.900212 0.899854 0.899687 0.899952 0.89981 0.899813 0.899811

std. error 0.12517 0.023295 0.035616 0.040652 0.08227 0.037202 0.189021 0.246493 0.258295

t-statistic 7.1918 38.64125 25.2755 22.1355 10.93583 24.19078 4.76038 3.650456 3.483653

Pr(> |t|) 0 0 0 0 0 0 0.000002 0.000262 0.000495

γ1

estimate 0.558456 1.156824 0.337742 0.050543 0.050471 0.05054

std. error 0.268302 0.435122 0.116069 0.434688 1.98074 0.960866

t-statistic 2.08145 2.65862 2.909835 0.11627 0.025481 0.052599

Pr(> |t|) 0.037393 0.007846 0.003616 0.907435 0.979671 0.958052

df

estimate 4.048854 1.91059 3.998909 1.989976 4.005752 1.97621

std. error 0.153306 0.262925 2.225083 0.41181 1.396173 1.027163

t-statistic 26.41034 7.2667 1.7972 4.832266 2.869094 1.92395

Pr(> |t|) 0 0 0.072305 0.000001 0.004116 0.054361

LogLikelihood 649.3951 676.7214 658.2845 727.6112 709.4254 734.5286 707.5468 711.9217 708.6446

Information Criteria

Akaike -3.4148 -3.5541 -3.4565 -3.8233 -3.7218 -3.8546 -3.7172 -3.735 -3.7177

Bayes -3.3731 -3.502 -3.4045 -3.7713 -3.6594 -3.7922 -3.6651 -3.6726 -3.6552

Persistence 0.951324 0.952165 0.951381 0.899854 0.899687 0.899952 0.975095 0.975061 0.975095
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