Abstract

Search for experimental designs which aid in research studies involving large number of treatments with minimal experimental units has been desired overtime. This paper constructs some new series of three associate Partially Balanced Incomplete Block (PBIB) designs having \(n(n - 2)/4 \) treatments with three associate classes in two replicates using the concept of triangular association scheme. The design is constructed from an even squared array of \(n \) rows and \(n \) columns \((n \geq 8)\) with its both diagonal entries bearing no treatment entries and that given the location of any treatment in the squared array, the other location of the same treatment in the array is predetermined. The design and association parameters for a general case of an even integer \(n \geq 8 \) are obtained with an illustrated case for \(n = 8 \). Efficiencies of the designs within the class of designs are obtained for a general case of even \(n \geq 8 \) with a listing of efficiencies of designs with blocks sizes in the interval \([8,22]\). The designs constructed have three associate classes and are irreducible to minimum number of associate classes.
Construction of Some New Three Associate Class Partially Balanced Incomplete Block Designs in Two Replicates

E. C. Kipkemoi, J. k. Koske and J. M. Mutiso

Abstract. Search for experimental designs which aid in research studies involving large number of treatments with minimal experimental units has been desired overtime. This paper constructs some new series of three associate Partially Balanced Incomplete Block (PBIB) designs having \(n(n - 2)/4 \) treatments with three associate classes in two replicates using the concept of triangular association scheme. The design is constructed from an even squared array of \(n \) rows and \(n \) columns \((n \geq 8) \) with its both diagonal entries bearing no treatment entries and that given the location of any treatment in the squared array, the other location of the same treatment in the array is predetermined. The design and association parameters for a general case of an even integer \(n \geq 8 \) are obtained with an illustrated case for \(n = 8 \). Efficiencies of the designs within the class of designs are obtained for a general case of even \(n \geq 8 \) with a listing of efficiencies of designs with blocks sizes in the interval \([8,22]\). The designs constructed have three associate classes and are irreducible to minimum number of associate classes.

Keywords. Partially Balanced Incomplete Block (PBIB), Associate class, three associate classes.

Introduction

By changing the arrangement of treatments or omitting certain blocks and or treatments, we obtain designs that may belong to a class of new designs. Using this technique Bose and Nair (1939) introduced some PBIB designs. Atiquallah (1958) established that considering PBIB designs based on triangular association scheme with \(v = n((n - 2))/2 \), \(b = (n - 1)((n - 2))/2 \), \(r = k = n - 2 \), \(\lambda_1 = 1 \) and \(\lambda_2 = 2 \). Other methods were given by Shrikande (1960, 1965) and Chang et al (1965) based on the existence of certain BIB designs and considering the dual of a BIB design as omitting certain blocks from the BIB design. John (1966) showed that triangular association scheme can be described by representing the treatments by ordered pairs \((x,y)\) with \(1 \leq x < y \leq q \) and then generalized (John, 1966) for the case that \(v = q(q - 1)((q - 2))/6 \), \((q > 3) \). Arya and Narain (1981) discussed a new association scheme called truncated triangular (TT) with five associate classes when \(v = p((p - 2))/2 \) with \(p \) an even positive integer \(\geq 8 \), and used to construct partial diallel crosses. Ching-Shui et al (1984) came up with a general and simple method of construction based on the relation of triangular and \(1_2 \) type of PBIB design.
Construction of designs

The design is constructed from a squared array of \(n \) rows and \(n \) columns (\(n \) is even positive integer \(\geq 8 \)) with both diagonal entries in the array having no treatments allocated to as illustration in the figure below

\[
\begin{array}{cccccc}
* & n_{12} & n_{13} & n_{14} & n_{15} & n_{16} & n_{17} & * \\
{n_{21}} & * & n_{23} & n_{24} & n_{25} & n_{26} & * & n_{28} \\
{n_{31}} & * & n_{32} & * & n_{34} & n_{35} & * & n_{37} \\
{n_{41}} & n_{42} & n_{45} & * & * & n_{46} & n_{47} & n_{48} \\
{n_{51}} & n_{52} & n_{53} & * & * & n_{56} & n_{57} & n_{58} \\
{n_{61}} & n_{62} & * & n_{64} & n_{65} & * & n_{67} & n_{68} \\
{n_{71}} & * & n_{73} & n_{74} & n_{75} & n_{76} & n_{78} & * \\
* & n_{82} & n_{83} & n_{84} & n_{85} & n_{86} & n_{87} & * \\
\end{array}
\]

\(i \) and \(j \) are integers (\(1 \leq i, j \leq n \)) such that;

Each row and column of the square array has \(n - 2 \) treatment entries.

The treatment entries are allocated in the array by following two subsequent steps

1. The initial set of \(v \) treatment entries are first filled on one triangle enclosed by the two diagonal and a side of the square array.
2. The second set of \(v \) treatment entries are replicated in each of the remaining triangles by simply reflecting the initial set of \(v \) treatment entries subsequently with the diagonal blank entries as mirrors in such a way that given any two entries \(n_{ij} \) and \(n_{ij} \) are allocated to treatment \(x \) if and only if the subscripts \(i + i = j + j \) or \(i + i + j + j = 2(n + 1) \).

Taking each row and column to constitute a block we obtain \(n/2 \) distinct blocks and thus a design with parameters

\[v = \frac{n(n-2)}{4} \quad b = n/2 \quad k = n - 2 \quad r = 2 \quad \lambda_1 = 2 \quad \lambda_2 = 1 \quad \lambda_3 = 0 \]

Association scheme

Two treatments are said to be:

- First associates if they both occur in the same row and column.
- Second associates if they both occur in the same row or the same column but not both.
- Third associates if they neither occur in the same row nor in the same column. Giving rise to the following association parameters.

\[n_1 = 1 \quad n_2 = 2(n - 4) \quad n_2 = \frac{n(n-10)+24}{4} \]

Imhotep Proc.
Construction of Some New Three Associate Class PBIB Designs

\[P_0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2(n-4) & 0 \\ 0 & 0 & 0 & \frac{n(n-10)+24}{4} \end{pmatrix}, \quad P_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 2(n-4) & 0 \\ 0 & 0 & 0 & \frac{n(n-10)+24}{4} \end{pmatrix}, \quad P_2 = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & n-4 & \frac{n-6}{4} \\ 0 & 0 & n-6 & \frac{n(n-14)+48}{4} \end{pmatrix}, \quad P_3 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 8 & 2(n-8) \\ 1 & 1 & 2(n-8) & \frac{n(n-18)+80}{4} \end{pmatrix} \]

Illustration: taking \(n = 8 \) we obtain three associate class PBIB design with the parameters:

\(v = 12 \quad b = 4 \quad k = 6 \quad r = 2 \)

\(\lambda_1 = 2 \quad \lambda_2 = 1 \quad \lambda_3 = 0 \)

\(n_1 = 1 \quad n_2 = 8 \quad n_3 = 2 \)

Whose blocks are:

1. (1, 2, 3, 4, 5, 6)
2. (1, 6, 7, 8, 9, 10)
3. (2, 5, 7, 10, 11, 12)
4. (3, 4, 8, 9, 11, 12)

With the parameters of the second kind given by:

\[P_0 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \quad P_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \quad P_2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \quad P_3 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 8 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \]

The efficiency factors for this class of designs are given by:

\(E_1 = \frac{n-4}{n-2} \)

\(E_2 = -\frac{n(n-4)^2}{6n^2-6n-16-n^3} \)

\(E_3 = -\frac{n(n-4)^2}{6n^2+2n-32-n^3} \)

and the overall efficiency factor of the design is

\[E = \frac{1}{n(n-2)^4} \left(\frac{4(n-4)}{n-2} - \frac{8n(n-4)^3}{6n^2-6n-16-n^3} + \frac{n(n-6)(n-4)^3}{6n^2+2n-32-n^3} \right) \]

Efficiencies of three associate class PBIB designs having \((n(n-2))/4 \) treatments with two replicates for \(6 \leq k \leq 22 \) are given in the table below.
Conclusion

In this paper we have constructed some new series of three associate class PBIB designs having \((n(n-2))/4\) treatments with two replications. The restriction of the number of replications to two helps to minimize cost. The average efficiency factors of these designs along with the three efficiencies factors \(E_1\), \(E_2\) and \(E_3\) are quite high for practical purposes.

References

Imhotep Proc.
E. C. Kipkemoi
e-mail: kipched@gmail.com
Department of Statistics and Computing, Moi University, P O Box 3900, Eldoret, Kenya.

J. k. Koske
e-mail: koske4@co.uk
Department of Statistics and Computing, Moi University, P O Box 3900, Eldoret, Kenya.

J. M. Mutiso
e-mail: johnkasome@yahoo.com
Department of Statistics and Computing, Moi University, P O Box 3900, Eldoret, Kenya.