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Abstract:  
Rainfall is of critical importance for many people particularly those whose livelihoods are 
dependent on rain fed agriculture. Methods of analysis of daily rainfall records based on 
Markov chain models have been available for many years and their value is widely 
recognized. However they are rarely used because of the complexity of their analysis. This 
paper describes how these models are being made more accessible through a series of 
specially written procedures and menus in GenStat, a widely available statistics package. 
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1. Introduction: 
Many people all over the world have devoted themselves in collecting climatic data for longer 
period of time but little is done on the analysis (Stern and Coe 1984). Despite a wide range of 
available statistical software, the effort of climatic data analysis still does not match their 
collection. Rainfall is one of the important climatic variables in planning and decision making 
in the agricultural sector particularly in those regions whose livelihood is dependent on rain 
fed agriculture. For this reason, as extensive understanding of rainfall regime is an important 
prerequisite in such planning.  

Rainfall variable is a stochastic process in nature and therefore they require stochastic 
models to describe them (Mimikou 1983). Markov Chain is one of the stochastic models that 
have gained popularity in describing rainfall characteristics since its introduction by (Gabriel 
and Neumann 1962). They found that the daily rainfall occurrence for the Tel Aviv data 
successfully fitted using the first-order Markov chain model.  Kotegota et al. in their paper 
(Kottegoda, Natale and Raiteri 2004) also reported that the first order Markov chain model 
found to fit the observed data in Italy successfully. However, (Wilks 1999) reported that there 
are cases where first order Markov chain model failed to fit the observed data and therefore 
higher order Markov chain model was an alternative to improve these inadequacies. 

Although a number of powerful statistical packages have the capability to analyze 
rainfall data using Markov chain models, most of them do not have specialized routines for 
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doing this.  Instat was introduced in the early 1980s as a simple statistical package to help in 
the teaching of statistics. It was later improved by adding more components with particular 
interest for processing climatic data (Stern, et al. 2006). Today it is the only available package 
with a specialized routine accessible for analyzing rainfall data using Markov chain models. 
Though it is not powerful enough to handle generalized linear model (GLM) (Gallagher and 
Stern 2009). 

The primary objective of this paper is to use GenStat command language to implement 
a specialized routine for Markov modeling of rainfall data in GenStat Package by creating 
procedures and making them accessible by creating their dialogues and menus. The 
improvement of the package to handle Markov modeling of rainfall data will encourage most 
researchers and other interested parties to utilize climatic data in their work since the 
procedures will be accessible to perform such analysis. Section 2 provides a theoretical 
background to Markov modeling and GLM. Section 3 discusses some of the methods used 
during the implementation. The program itself is discussed in Section 4, and an example is 
discussed in Section 5. Finally section 6 concludes with a discussion. 

2. Background Information: 
A two state Markov chain is the commonly used type of Markov model where state is 

the condition of a day. A day is referred to as wet if rainfall received is greater than a 
threshold value (a minimum value say 0.85) or dry if the rainfall amount is at most than the 
threshold value. We will describe the Markov model for rainfall occurrences and amounts.  

2. 1. The Generalized Linear Model  
The Generalized Linear Model was introduced by (Nelder and Wedderburn 1972).  It 

is used where the response variable neither follows a normal distribution nor have 
homogenous variances (Payne, et al. 2009). Comparing GLM and Multiple regression models 
(a form of general linear model) makes its features seen more clearly (Stern and Coe 1982). 
The expression below can be used to define General linear models: 

𝑦𝑖 = 𝛽0𝑖 + ∑ 𝛽𝑗𝑖𝑥𝑗𝑖
𝑝
𝑗=1 + 𝜖𝑖  (𝑖 = 1, … ,𝑛  𝑎𝑛𝑑 𝐸(𝜖𝑖) = 0)  [1] 

These set of n equations can be written in the form of a compact model as shown in 
the below. 

 𝒀 = 𝑿𝜷 + 𝝐            [2] 

Where  Y is a vector of response X is the matrix of explanatory variable (Covariate), β 
is a vector of unknown parameters (where β are estimated by solving the least-square 
equations shown in Eq. (3)) and ϵ is a vector of unobservable of errors corresponding to the 
observation.  

𝑿′𝑿𝜷�= 𝑿′𝒀               [3] 
The approach used by (Nelder and Wedderburn 1972) was to describe any given 

model in terms of its link function and its variance function. The variance function describes 
the relationship between the mean and the variance of the dependent variable to allow for a 
proper calculation of the variance under non-normal conditions while the link function 
describes the non-linear relationship between the mean of the dependent variable and the 
linear right hand side. 

Suppose we generalize Eq. (2) with a linear predictor based on the mean of the 
outcome variable, then the function 𝑔(𝜇) will be called the link function.  

𝑔(𝜇) = 𝜃 = 𝑿𝜷           [4] 
The link function can be inverted as shown in Eq. (5) 
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𝜇 = 𝑔−1(𝑿𝜷)           [5] 

Rainfall occurrence  yi take a binomial distribution (it can rain or not rain) with mean 
µ then its link function is a logit as derived by (Nelder and Wedderburn 1972) and expressed 
as:  

 𝑔(𝜇) = 𝑙𝑜𝑔 � 𝜇
1−𝜇

� = 𝑿𝜷           [6] 

Then the µ can be expressed as: 

𝜇 = 𝑒𝑥𝑝 (𝜃)
1+𝑒𝑥𝑝 (𝜃)

           
 [7] 

2. 2. Markov chain 
A Markov chain is a time ordered probabilistic process that goes from one state to 

another according to some probabilistic transition rules determined by the current state only 
(Perera et.al, 2002). That is, the probability at some point of time τ being in a certain state is 
conditioned on the states of the previous time, where the number of previous periods is 
termed as the order of the chain. Markov chain is useful for analyzing events whose 
likelihood depends on what happened last. 

2.2.1.The Markov Chain of first order 
In the first-order markov chain, the current state is dependent solely on the state of the 

immediate previous period and the chance that a process is in state j at time τ given that it was 
in state i at time τ − 1 is represented by transitional probability Pij which is expressed as 
follows 

 𝑃𝑖𝑗,𝜏 = 𝑃𝑟(𝑋𝜏 = 𝑗|𝑋𝜏−1 = 𝑖)           [8] 

2.2.2.High Order Markov Chain  
A Markov chain of order λ is referred to as high order Markov chain if λ greater than1. 

The probability of a day of the year having a particular state will depend on the states of the λ 
previous days. The Markov chains of order 2 and 3 satisfy the conditions in Eq. (9) and Eq. 
(10) respectively. 

𝑃𝑖2,𝑖1𝑗,𝜏 = 𝑃𝑟(𝑋𝜏 = 𝑗|𝑋𝜏−1 = 𝑖1,𝑋𝜏−2 = 𝑖2, … ,𝑋0 = 𝑖0) = 𝑃𝑟(𝑋𝜏 = 𝑗|𝑋𝜏−1 = 𝑖1,𝑋𝜏−2 = 𝑖2)
        [ 9] 

Where Pi2,i1j,τ is the transition probability of state j in day τ, year n given state i1 in day τ − 1 
and state i2 in day τ − 2 

𝑃𝑖3,𝑖2,𝑖1𝑗,𝜏 = 𝑃𝑟�𝑋𝜏 = 𝑗|𝑋𝜏−1 = 𝑖1,𝑋𝜏−2 = 𝑖2, … ,𝑋0 = 𝑖0 ) = 𝑃𝑟(𝑋𝜏 = 𝑗|𝑋𝜏−1 = 𝑖1,𝑋𝜏−2 =
𝑖2,𝑋𝜏−3 = 𝑖3)� [10] 

Modeling high order Markov chain leads to a high-dimensional space of parameters 
(Vardi and Ju 1999). A higher order Markov chain say of order 2 with two states will have 
four parameters, order 3 will have eight parameters order 4 will have sixteen parameters and 
order λ will have 2λ parameters. Increasing the number of states increases the number of 
parameter in each order. Such models may not be accurate in situation where there may be no 
sufficient climatic data to estimate them. However, (Longhai and Radford 2008) and” (Vardi 
and Ju 1999).  Suggest that the high dimension of parameters can be reduced in such 
situations. 
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2.2.3.Fitting a first order Markov Model to rainfall data  
The first order model assumes that the probability of rain occurring on any day depends 

only on whether it did or did not rain on the previous day. To fit this model, the parameter for 
transition probability 𝑝𝑖,𝜏 is estimated over the year (Stern and Coe 1982). The 𝑃𝑖,𝜏  is the 
probability of rain in day 𝜏 given state 𝑖 (for 𝑖 = 0,1 ) in day 𝜏 − 1. The estimate of  𝑝𝑖,𝜏  is 
given by  𝑟𝑖,𝜏  (Stern and Coe 1984) which is the proportion of years with state 𝑖 in their day 
𝜏 − 1 that had rain in their day 𝜏. The  𝑟𝑖,𝜏  is expressed as shown below.  

  𝑟𝑖,𝜏  =
𝑛𝑖1,𝜏

𝑛𝑖1,𝜏+𝑛𝑖0,𝜏
          [11] 

Where, ni1,τ is the number of years with rain on day τ and ni0,τ is the number of years 
with no rain on day τ 

The random variable ni1,τ is binomially distributed with the probability of success being  pi,τ  
and(ni1,τ + ni0,τ) is the number of trials. Therefore the model used is  

 𝑝𝑖,𝜏 = 𝑔(𝜃𝑖𝜏)            [12] 

Where g() is a logit link function connecting the probabilities   pi,τ to the function θiτ 
which is linear unknown parameters (Stern and Coe 1984). The model is a generalized linear 
model since binomial is a member of the exponential family (Nelder and Wedderburn 1972) 
 pi,τ is therefore expressed as  

 𝑝𝑖,𝜏 = 𝑒𝑥𝑝 (𝜃𝑖𝜏)
1+𝑒𝑥𝑝 (𝜃𝑖𝜏)

           [13] 

Stern (Stern and Coe 1984) suggested that Fourier analysis may be used to express θiτas 
shown below: 

𝜃𝑖𝜏 = 𝑎𝑖0 + ∑ [𝑎𝑖𝑘 sin(𝑘𝜏′) + 𝑏𝑖𝑘cos (𝑘𝜏′)]𝑚
𝑘=1       [14] 

Where τ′ = 2πτ/366 and m is the number of harmonics 

2.2.4.High Order Markov Chain  

A Markov chain of order λ is referred to as high order Markov chain if λ greater than1. 
The probability that on time τ  will have a particular state depends on the states of the 
previous time τ − λ. For example the Markov chains of order 2 and 3 satisfy the conditions in 
Eq. (15) and Eq. (16) respectively. 

𝑃𝑖2,𝑖1𝑗,𝜏 = 𝑃𝑟(𝑋𝜏 = 𝑗|𝑋𝜏−1 = 𝑖1,𝑋𝜏−2 = 𝑖2, … ,𝑋0 = 𝑖0) = 𝑃𝑟(𝑋𝜏 = 𝑗|𝑋𝜏−1 = 𝑖1,𝑋𝜏−2 = 𝑖2)
            [15] 

Where Pi2,i1j,τ is the transition probability of state j in time τ, given state i1 in time τ − 1 and 
state i2 in time τ − 2 

𝑃𝑖3,𝑖2,𝑖1𝑗,𝜏 = 𝑃𝑟(𝑋𝜏 = 𝑗|𝑋𝜏−1 = 𝑖1,𝑋𝜏−2 = 𝑖2, … ,𝑋0 = 𝑖0) = 𝑃𝑟(𝑋𝜏 = 𝑗|𝑋𝜏−1 = 𝑖1,𝑋𝜏−2 =
𝑖2,𝑋𝜏−3 = 𝑖3)                [16] 

Modeling a high order Markov chain leads to a high-dimensional space of parameters 
(Vardi and Ju 1999). A higher order Markov chain say of order 2 with two states will have 
four parameters, order 3 will have eight parameters order 4 will have sixteen parameters and 
order λ will have 2λ parameters. Increasing the number of states increases the number of 
parameter in each order. Such models may not be accurate in situation where there may be no 
sufficient data to estimate them. However, (Longhai and Radford 2008) and (Vardi and Ju 
1999) suggest that the high dimension of parameters can be reduced in such situations. 

3. Methods 
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The implementation of this work involves creating four procedure using GenStat 
command language. These are: ‘count’, ‘prepare’, ‘fitting’ and ‘fittingamount’ using the 
GenStat command language. The count procedure reads the raw data then counts the number 
of days with a specific state over the years and calculates the amount of rain in the rainy days 
using Markov model. The prepare procedure in calculates the probability of rain for each day 
of the year, the fitting procedure fits the probability of rain for each day of the year while 
amountfitting procedure fits the amount of rainfall.  

GenStat has a capability of allowing users to create their own menus for newly developed 
procedures (Gallagher and Stern 2009). Once a procedure has been written, it can be recalled 
and used in the command interface or its corresponding menu and dialogs built and used in a 
graphical user interface as described by (Gallagher and Stern 2009).  

4. Program  
4.1. Procedures  

The dialogs and menus for the four procedures are built in GenStat and can be accessed 
through a newly created menu called ‘user’ (any time you add a procedure into GenStat, it 
will be listed in the menu ‘user’ See Figure 1). The user menu contain four submenus namely; 
Counts and Total From daily data, Probability of rain, fitting probability and fitting amounts 
corresponding to ‘count’, ‘prepare’, ‘fitting’ and ‘fittingamount’ procedures respectively (see 
Figure 2 and Figure 3 ).  Once the procedures have been built in GenStat system, they can 
now be used to analyze climatic data using Markov chain model.  

 
Figure 1:User menu 

 

 

Figure 2: Counts and Total form Daily Data and Probability of rain dialog boxes 
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Figure 3: Fitting probability and fitting amounts 
4.2. Input data 

The input data required is in variate data type in a single column for all the years (rainfall 
data) and a factor column over which the counts are done. The factor column can be in days, 
months or weeks of the year.  A sample of data required for the procedures is shown in Figure 
4 

 

Figure 4: Sample rainfall data 
In most cases, the rainfall data may not be given in one stalked column as shown in figure 1, 
in such a case the user is expected to stalk the data into one column over the years the data is 
given. This facility is available in GenStat by using Spread=> Manipulate=> Stalk menu.  

4.3. Setting up the analysis  
Modeling rainfall data using these newly created procedures are done in two stages. The 

first stage of the analysis is to determining the rain counts and total of specific days over the 
years using count procedure. Then any the remaining three procedures can follow since they 
use the results from count procedure. It is in this first stage of analysis, where the user 
specifies the order of chain, the threshold value of rainfall and whether or not the model will 
be high or normal.   

In the second stage the calculation of probabilities is done using the ‘Probability of rain’ 
dialog box, the user simply specify the table for the counts and then indicate whether to 
display the result in a table or a graph, both or none. Then to fitting of  the probabilities is 
done by using a  ‘fitting probabilities’ dialog box where the user specifies the table for counts, 
number of harmonics used for fitting and whether to plot the fitted values or not.  Finally, 
when fitting amounts, the ‘fitting amount’ dialog box is used; the amounts and counts tables 
have to be specified.  
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5. Example.  
We will use the procedures to analyze the rainfall dataset for Samaru1, Nigeria collected 

from 1930-1940. The data is available in Instat library. It is exported to GenStat spreadsheet 
and then stalked into one variate of rainfall data and a factor column for year. A factor column 
for day number with levels 1-366 is created over which the counts will be done. 

The analysis in this example will be based on the following categories; two states and a 
three state, normal orders and high order, Markov on daily basis and Markov summarized to 
group of days totals (weekly, monthly and 5-days etc).   

The analysis starts with the count procedures with the options of two states Markov. 
This results for count and amount of rainfall in a summary table on a spreadsheet.  The 
command associated with the analysis is shown below.  
COUNTS [CLASS=DayYear; HIGH=NO; SPREAD=YES; STATES=2] a=Amount; counts=Count; 
DATA=Rain 

Based on the number of states and order of the Markov chain specified, in the Counts and 
Total dialog box, the ‘counts’ procedure counts the number of times that a day of the year is 
having a specific state-condition for the number of years the data is observed and then 
calculates the rainfall amounts for rainy days which is defined as the actual amount of rainfall 
recorded minus the threshold value. That is, if the threshold is 0.85mm and in a specific day, 
it was recorded that the rainfall was 2mm, then the rainfall amount is 1.15mm.  

The probability plots for the model is obtained by using the prepare procedure and plot a 
graph for the model shown in the Figure 5. The plot is overcrowded and seems hard to read 
and distinguish; a better plot can be obtained when the days of the years are summarized into 
groups. The fitted model for counts and amounts are shown in figure 3 (a) and (b). The results 
in Figure 6(a) indicate that there is a higher chance of rain between day 150 and day 270 
though considering the state condition of previous day (Markov chain of order 1), their is a 
higher chance of rain given that the previous day was rainy than when the previous day is   
dry. In Figure 6(b), the highest amount of rainfall given that the previous day being wet was 
experienced between days 150 to day 230. However, the expected amount of rain will be 
higher given that in the previous day it had rained.  

 

1 This data set is readily available in Instat library, Instat package is downloadable freely from  
http://www.ssc.rdg.ac.uk/ 

                                                           

http://www.ssc.rdg.ac.uk/
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Figure 5: Probability Plot for a two-state Markov Chain Model 

  
(a)                                                                                          (b) 

Figure 6: Fitted Probability Plot (a) and Amount (b) for a two-state Markov Chain 

The analysis of deviance is also given when the analysis is run (see Table 1) and it 
suggest that two harmonics is significant (P-Value<0.001) when fitting the model 
Table 1: Analysis of deviance 
Change d.f. deviance Mean 

deviance 
deviance 
ratio 

Aprox. 
chi pr 

+ half_hamonic[1]  1 55.762 55.762 55.76 <.001 
+ half_hamonic[2]  1 19.970 19.970 19.97 <.001 

+ half_hamonic[3]  1 11.364 11.364 11.36 <.001 

+ half hamonic[4]  1 18.066 18.066 18.07 <.001 
      Residual  193  223.368  1.157     

Total  197  328.530  1.668     

6. Summary and Conclusion 
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The current version of GenStat (version 14) is very powerful in statistical analysis and in 
particular climatic data analysis with the capability of handling the rainfall data using Markov 
chain model approach, however this functionality is not accessible a directly that non-
statistician can used. In this work therefore, we have presented four GenStat procedures for 
analyzing rainfall data using Markov Chain model approach.  The procedure can now be used 
directly through the dialogs and menu.  

We have illustrated the use of these procedures by applying it to rainfall data for Samaru, 
Nigeria. The example illustrated here is only a one case (a normal Markov chain model of 
order 1 with two states) out of other possibilities that the procedure can perform including: 
Markov chain model of order (0, 2, 3,…n), more than states model and  High order Markov 
chain explained in section 2.2.4.  

Future work might include modeling and implementation climatic events, crop 
performance index analysis, summaries of climatic data, time series analysis, and temperature 
analysis etc. For a full utilization of the package in handling climatic data, it is important to 
look forward in implementing all these aspects of climatic analysis.    
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