Stochastic model for In-Host HIV dynamics with therapeutic intervention

Abstract
Mathematical models are used to provide insights into the mechanisms the dynamics between HIV and CD4+ cellular populations and molecuar interactions can be used to investigate the eff ective points of interventions in the HIV life cycle. With that in mind, we develop and analyze a stochastic model for In-Host HIV dynamics that includes combined therapeutic treatment and intracellular delay between the infection of a cell and the emission of viral particles, which describes HIV infection of CD4+ T-cells during therapy. The unique feature is that both therapy and the intracellular delay are incorporated into the model. Models of HIV infection that include intracellular delays are more accurate representations of the biological data. We show the usefulness of our stochastic approach towards modeling combined HIV treatment by obtaining probability distribution, variance and co-variance structures of the healthy CD4+ cell, and the virus particles at any time t. Our analysis show that, when it is assumed that the drug is not completely eff ective, as is the case of HIV in vivo, the predicted rate of decline in plasma HIV virus concentration depends on three factors: the death rate of the virons, the e cacy of therapy and the length of the intracellular delay.
Description
Conference paper presented at “The 2nd EAUMP Conference” on 22nd – 25th August 2012. Arusha - Tanzania
Mathematical models are used to provide insights into the mechanisms the dynamics between HIV and CD4+ cellular populations and molecuar interactions can be used to investigate the effective points of interventions in the HIV life cycle. With that in mind, we develop and analyze a stochastic model for In-Host HIV dynamics that includes combined therapeutic treatment and intracellular delay between the infection of a cell and the emission of viral particles, which describes HIV infection of CD4+ T-cells during therapy. The unique feature is that both therapy and the intracellular delay are incorporated into the model. Models of HIV infection that include intracellular delays are more accurate representations of the biological data. We show the usefulness of our stochastic approach towards modeling combined HIV treatment by obtaining probability distribution, variance and co-variance structures of the healthy CD4+ cell, and the virus particles at any time t. Our analysis show that, when it is assumed that the drug is not completely effective, as is the case of HIV in vivo, the predicted rate of decline in plasma HIV virus concentration depends on three factors: the death rate of the virons, the ecacy of therapy and the length of the intracellular delay.
Keywords
Intracellular delay, combined therapy, CD4+ T-cells, HIV virus dynamics, stochastic model
Citation