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Abstract. We study the distribution of the number of parts of given
multiplicity (or equivalently ascents of given size) in integer partitions.
In this paper we give methods to compute asymptotic formulas for the
expected value and variance of the number of parts of multiplicity d (d
is a positive integer) in a random partition of a large integer n and also
prove that the limiting distribution is asymptotically normal for fixed
d. However, if we let d increase with n, we get a phase transition for d
around n1/4. Our methods can also be applied to so called λ-partitions
where the parts are members of a sequence of integers λ.
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1. Introduction
Let d be a positive integer. An ascent of size d in a partition (c1, c2, · · · , ct)
of an integer n is a succession of two parts ci, ci+1 such that ci+1 − ci = d.
If c1 = d then we assume that the partition has already one ascent of size
d. Then the number of ascents of size d in a given partition is exactly the
number of parts having multiplicity d in its conjugate partition.

Multiplicities in partitions were studied, amongst others, by Corteel et
al [3], who showed that a randomly selected part of a random partition has
multiplicity d with probability tending to 1

d(d+1) . As a main step in their
proof, they provide an asymptotic formula for the average number of parts
of multiplicity d. A similar result was found by Knopfmacher and Munagi [9]
for the number of ascents (successions) of size d. Here we improve on these
results by proving a central limit theorem which can be stated as follows:

This project is supported by the German Academic Exchange Service (DAAD), in associa-
tion with the African Institute for Mathematical Sciences (AIMS). Code No.:A/09/04406.
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Theorem 1. The limit distribution of the number of parts having multiplicity
d (or ascents of size d) in a random partition of n is Gaussian with mean
and variance given by the asymptotic formulas:

µn =

√
6n

πd(d+ 1)
+

3

π2d(d+ 1)
+ o(1) (1)

and

σ2
n ∼

(
1

πd(d+ 1)
− 1

2πd(d+ 1)(2d+ 1)
− 3

π3d2(d+ 1)2

)√
6n (2)

respectively as n→∞.

A similar limit theorem was shown by Brennan, Knopfmacher and Wag-
ner [2] for ascents of size d or more (equivalently, parts of multiplicity d or
more). Later in this paper we give a generalisation of Theorem 1 and the
results in [2] to λ-partitions satisfying the so called Meinardus scheme. For
a complex variable s, the Dirichlet series associated to a sequence of positive
integers λ is

D(s) =
∑
λ

λ−s, (3)

and λ is said to satisfy the Meinardus scheme if the following three conditions
hold:
• (M1) The Dirichlet series D(s) converges in the half-plane Re(s) > α >

0, and can be analytically continued into the half-plane Re(s) ≥ α0 for
some α0 > 0. In Re(s) ≥ α0 , D(s) is analytic except for a simple pole
at s = α with residue A.
• (M2) There is a constant c > 0 such that D(σ+ it)� |t|c uniformly for
σ ≥ α0 as |t| → ∞.
• (M3) Let χ(τ) =

∑
λ e
−λτ , where τ = r + iy with r > 0 then

χ(r)− Re(χ(τ))�
(

log
1

r

)2
uniformly for r1+

α
2 ≤ |y| ≤ π as r → 0.

There are many sequences of positive integers satisfying the Meinardus
scheme including the sequence λ = Z+. We shall see more examples in Section
4.

In the above results, d was considered fixed. But when we let d increase
with n and d → ∞ as n → ∞ then the following phase transition can be
observed:

Theorem 2. The limit distribution of the number of parts of multiplicity d is:

• Gaussian with mean and variance asymptotically equal to
√
6n

πd(d+1) for
d = o(n1/4),
• Poisson with parameter

√
6

πα2 for d ∼ αn1/4,
• degenerate at zero for dn−1/4 →∞.
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Other examples of Gaussian central limit theorems in the context of
partitions include those by Goh and Schmutz [7] for the number of distinct
parts and by Hwang [8] for the number of parts in a restricted partition (all
multiplicities are less or equal to 1), generalising a result of Erdős and Lehner
[5].

We present our results in the following way: We shall give a detailed
proof of Theorem 1 in Section 2, and in Section 3 we discuss how the proof
of Theorem 1 can be adapted to prove Theorem 2. In these proofs we use
methods that can be generalised to the case of λ-partitions. Then Section 4
gives a generalisation of Theorem 2 to the case of λ-partitions and finally in
Section 5 we discuss the generalisation of the results in [2].

2. Proof of Theorem 1
Throughout this section, d is a fixed positive integer. For a large positive
integer n, we assign a uniform probability measure to the set of all partitions
of n. Then the random variable $n is the number of parts of multiplicity
d (which is the same as the number of ascents of size d in this case) in a
random partition, its mean and standard deviation will be denoted by µn and
σn respectively. We shall use

∏
λ and

∑
λ as abbreviations for the product

and sum over all positive integers respectively. The reader should take note
of the change in the other sections as we shall use the same notation but with
different meaning.

The following is the generating function for the distribution of the num-
ber of parts of multiplicity d:

Q(u, z) =
∏
λ

(
1

1− zλ
+ (u− 1)zλd

)
, (4)

that is
Qn(u)

Qn(1)
= E(u$n), (5)

where Qn(u) is the coefficient of zn in Q(u, z). Note that Qn(1) is the total
number of partitions of n. We also introduce the following functions:

f(τ) := −
∑
λ

log(1− e−λτ ) (6)

and
φ(v, τ) :=

∑
λ

log(1 + ve−dλτ (1− e−λτ )). (7)

Then we have
log(Q(u, e−τ )) = f(τ) + φ(u− 1, τ). (8)

For simplicity we shall use the following abbreviation: if F (τ) is a func-
tion of a complex variable τ , and if it is analytic in some domain containing
an element τ0 in its interior, then we write Fk(τ0) for

∂k

∂kτ
F (τ)

∣∣∣
τ=τ0

.
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Let us first recall the asymptotic formula for Qn(1).

Lemma 3. The number of partitions of n is given by the following asymptotic
formula

Qn(1) =
enr√

2πf2(r)
Q(1, e−r)(1 +O(n−1/7)) (9)

as n→∞, where r is the positive solution of the equation

n =
∑
λ

λ

eλr − 1
. (10)

Note that the above asymptotic formula implies the well known Hardy-
Ramanujan formula:

Qn(1) ∼ 1

4n
√

3
exp(π

√
2n/3),

but one does not require it explicitly to prove our results. The proof of Lemma
3 is based on the use of the saddle point method that we shall not present
here, see for instance [1] for a detailed presentation. However we use a similar
approach to obtain the asymptotic formulas for the mean and variance given
in Theorem 1. As mentioned earlier, results on the mean and variance can
already be found in the literature (see [3, 9]), but the method we apply here
is easier to generalise to λ-partitions.

2.1. Mean and Variance
By definition, the mean of the random variable $n is

µn =
∂

∂u
E(u$n)

∣∣∣
u=1

=
1

Qn(1)

∂

∂u
Qn(u)

∣∣∣
u=1

.

In order to find an asymptotic formula for µn we shall consider the following
instead

Qn(1)(µn − g(r)) =
enr

2π

∫ π

−π
exp(int+ f(r + it))(g(r + it)− g(r))dt (11)

for any r > 0, where

g(τ) =
∑
λ

e−dλτ (1− e−λτ ).

We approximate this integral by means of the saddle point method where r
is chosen to be the same as defined in Lemma 3, that is the solution of the
equation

n =
∑
λ

λ

eλr − 1
.
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The series on the right hand side is a monotone decreasing function of r
therefore the solution exists and it tends to zero as n → ∞. Now we claim
that the integral (11) can be approximated by

enr

2π

∫ r1+β

−r1+β
exp(int+ f(r + it))(g(r + it)− g(r))dt (12)

when 1/3 < β < 1/2. This is not surprising since we know that without the
term g(r + it)− g(r) the estimate holds from the fact that for |t| > r1+β

|Q(1, e−(r+it))|
Q(1, e−r)

= exp
(
−
∑
k≥1

1

k

∑
λ

e−λkr(1− cos(λkt))
)

≤ exp
(
−
∑
λ

e−λr(1− cos(λt))
)

� exp
(
− c| log r|2

)
is smaller than any power of r−1 as r → 0 (this is in fact the case for any
sequence satisfying the condition (M3) in the Meinardus scheme). But note
that for any t

|g(r + it)− g(r)| �
∑
λ

e−λr � r−1

as r → 0. The claim follows from these two observations. Now for |t| ≤ r1+β
we have

f(r + it) =f(r) + if1(r)t− f2(r)
t2

2!
− if3(r)

t3

3!
+ (13)

f4(r)
t4

4!
+ if5(r)

t5

5!
+O

(
|t|6 sup
|η|≤|t|

|f6(r + iη)|
)
. (14)

In order to obtain asymptotic estimates for fk(r) (and later also other quan-
tities) we apply the method of Mellin transforms, in particular the following
lemma from [6]:

Lemma 4. Let F (x) be a continuous function in (0,∞) with Mellin transform
F ∗(s) having a non empty fundamental strip 〈α, β〉. Assume that F ∗(s) ad-
mits a meromorphic continuation to the strip 〈γ, β〉 for γ < α with a finite
number of poles there, and is analytic on Re(s) = γ. Assume also that there
exists a real number η ∈ (α, β) such that

F ∗(s) = O(|s|−c)

with c > 1, when |s| → ∞ in γ ≤ Re(s) ≤ η. If F ∗(s) admits the singular
expansion for s ∈ 〈γ, α〉

F ∗(s) �
∑

(ξ,k)∈A

dξ,k
(s− ξ)k

,
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then an asymptotic expansion of F (x) at 0 is

F (x) =
∑

(ξ,k)∈A

(−1)k−1dξ,k
(k − 1)!

x−ξ(log x)k−1 +O(x−γ).

Specifically, the Mellin transform of fk(r) is

(−1)kζ(s− k + 1)Γ(s)ζ(s− k).

Therefore, Lemma 4 gives

fk(r) ∼ (−1)kk!
π2

6rk+1
(15)

as r → 0, in particular n ∼ π2

6 r
−2. Furthermore, to estimate the error term

in Equation (13) we have

|f6(r + iη)| �
∑
λ

λ6e−λr

|1− e−λ(r+iη)|6
.

For λ ≥ r−1 we have
|1− e−λ(r+iη)| ≥ 1− e−1,

so ∑
λ≥r−1

λ6e−λr

|1− e−λ(r+iη)|6
�
∑
λ

λ6e−λr � r−7

and if λ < r−1,then

|1− e−λ(r+iη)| � 1− e−λr � λr.

Therefore, ∑
λ<r−1

λ6e−λr

|1− e−λ(r+iη)|6
� r−6

∑
λ<r−1

e−λr � r−7.

Hence for |η| ≤ r1+β

|f6(r + iη)| � r−7,

and we have

enit+f(r+it) = ef0(r)−f2(r)
t2

2

(
1− if3(r)

t3

3!
+

f4(r)
t4

4!
+ if5(r)

t5

5!
+O(r6β−2)

)
.

Similarly we have

g(r + it)− g0(r) = ig1(r)t− g2(r)
t2

2
+O(r3β−1), (16)

and we also have the following asymptotic formula:

gk(r) =
(−1)kk!

d(d+ 1)

1

rk+1

(
1 +O(r)

)
, (17)



On the distribution of multiplicities in integer partitions 7

this can also be obtained elementarily since g(τ) is a difference of geometric
series in this case. Therefore, one can approximate Qn(1)(µn − g0(r)) by

enr+f0(r)

2π

∫ r1+β

−r1+β
e−f2(r)t

2/2

(
−g2(r)

t2

2
+ f3(r)g1(r)

t4

3!
+O(r7β−3)

)
dt

with an exponentially small error term, since integrals involving an odd
power of t are identically 0. We may now change the range of integration
to (−∞,+∞) with another exponentially small error term and then apply
the formula for the Gaussian integral. Then we get the following expression
for the mean in terms of r:

µn = g0(r)− g2(r)

2f2(r)
+
f3(r)g1(r)

2f22 (r)
+O(r7β−3), (18)

which gives

µn =
1

d(d+ 1)
r−1 +

3

2π2d(d+ 1)
+O(r7β−3). (19)

Now for the variance we have

σ2
n =

∂2

∂2u
E(u$n)|u=1 − µ2

n + µn. (20)

So we need to find an approximation of the second factorial moment

∂2

∂2u
E(u$n)|u=1 =

enr

2πQn(1)

∫ π

−π
exp(int+ f(r + it))ψ(r + it)dt, (21)

where ψ(τ) = g2(τ)− h(τ) and

h(τ) =
∑
λ

e−2dλτ (1− e−λτ )2.

Now we use the same method as for the mean: we obtain

g2(r + it) = g20(r) + 2ig0(r)g1(r)t− (g21(r) + g0(r)g2(r))t2 +O(r3β−2)

and also

h(r + it) = h0(r) + ih1(r)t− h2(r)
t2

2
+O(r3β−1).

Since hk(r) has the same order as gk(r), the contribution from −h(r+ it) in
the integral is −h0(r) with an error of at most constant order. For g2(r+ it)
we proceed as we did for the mean, and the main term of the integral comes
from

(g2(r + it)− g20)

(
1− if3(r)

t3

3!
+ f4(r)

t4

4!
+ if5(r)

t5

5!
+O(r6β−2)

)
=

2ig0(r)g1(r)t− (g21(r) + g0(r)g2(r))t2 + 2g0(r)g1(r)f3(r)
t4

3!
+O(r7β−4)

+ terms involving odd powers of t.
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When we apply the integral we get

σ2
n + µ2

n − µn−g20(r) + h0(r) =

−g21(r)− g0(r)g2(r)

f2(r)
+
g0(r)g1(r)f3(r)

f22 (r)
+O(r7β−4),

which implies that

σ2
n = µn − h0(r)− g21(r)

f2(r)
+O(r7β−4), (22)

which gives

σ2
n =

(
1

d(d+ 1)
− 1

2d(d+ 1)(2d+ 1)
− 3

π2d2(d+ 1)2

)
r−1+O(r7β−4). (23)

Having these formulas for the mean and variance we may use Lemma 4 to
deduce asymptotic formulas as a function of n. First we need an asymptotic
formula for r = r(n). We have already mentioned an asymptotic dependence
between n and r as a consequence of (15), and expanding further, using
Lemma 4, we get

n =
π2

6
r−2 − 1

2
r−1 +O(1),

which implies that

r−1 =

√
6

π

√
n+

3

2π2
+O(n−1/2). (24)

So the equations (19) and (23) give the asymptotic formulas for the mean
and variance

µn =

√
6

πd(d+ 1)

√
n+

3

π2d(d+ 1)
+O(n−ε) (25)

and

σ2
n ∼

(
1

πd(d+ 1)
− 1

2πd(d+ 1)(2d+ 1)
− 3

π3d2(d+ 1)2

)√
6n (26)

as n → ∞, where ε is a positive constant. These prove the asymptotic for-
mulas in Theorem 1.

2.2. Moment Generating Function
We saw that the mean and variance are both tending to infinity, so in order
to determine the limiting distribution we need to consider the normalised
random variable

Xn :=
$n − µn

σn
. (27)

The moment generating function of Xn is defined as

Mn(x) := E(exXn) (28)
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for a fixed real number x. To complete the proof of Theorem 1 we need to show
that Mn(x) converges pointwise to ex

2/2 within a fixed interval containing 0.
Note that Mn(x) can also be written as follows:

Mn(x) = e−xµn/σn
Qn(ex/σn)

Qn(1)
. (29)

Recall the formula for the coefficient

Qn(u) =
enr

2π

∫ π

−π
exp(int+ f(r + it) + φ(u− 1, r + it))dt. (30)

We use the saddle point method again to find an asymptotic formula of the
latter integral for u suitably close to 1, for now let us just say that |u−1| ≤ δ
for some fixed small δ > 0. We shall be able to provide an asymptotic formula
for Qn(u) by using a series of lemmas. We begin with the following which
allows us to ignore the tails of the integral in (30).

Lemma 5. There is a positive constant c1, such that if π > |t| > r1+c where
1/3 < c < 1/2 then

|Q(u, e−(r+it)|
Q(u, e−r)

� e−c1| log r|
2

as r → 0+.

Proof. In fact this proof works for any sequence of positive integers λ satisfy-
ing the condition (M3) of the Meinardus scheme (α3 < c < α

2 for the general
case ), but also for arbitrary d. First we claim that for any complex number
z such that |z| ≤ 2 we have

|1 + z|
1 + |z|

≤ e− 1
9 (|z|−Re(z)).

Indeed, for |z| ≤ 2 we have

|1 + z|2

(1 + |z|)2
= 1− 2

|z| − Re(z)

(1 + |z|)2

≤ 1− 2

9
(|z| − Re(z))

≤ e− 2
9 (|z|−Re(z)).

Now for any l that is a member of the sequence λ, and any z such that |z| ≤ 1

|1 + zl + z2l+ · · ·+ z(d−1)l + uzdl + z(d+1)l + · · · | (31)

≤ |1 + zl|+ |z2l + z3l|+ · · · . (32)

Note that only one of the terms in (32) involves u, it is either |uzdl+z(d+1)l| or
|z(d−1)l+uzdl| depending on the parity of d. We may assume that 1/2 ≤ u ≤ 2.
Using the inequality above, we find that for all positive real a and b such that
1/2 ≤ b/a ≤ 2,

|azkl + bz(k+1)l| ≤ e− 1
18 (|z|

l−Re(zl))
(
a|z|kl + b|z|(k+1)l

)
,
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which implies that (31) is at most

e−
1
18 (|z

l|−Re(zl))(1 + |z|l + |z|2l + · · ·+ |z|(d−1)l + u|z|dl + |z|(d+1)l + · · · ).
Hence,

|Q(u, e−(r+it)|
Q(u, e−r)

≤ exp
(
− 1

18

∑
λ

e−λr(1− cos(λrt))
)
,

which proves the lemma if the sequence λ satisfies the condition (M3) of the
Meinardus scheme. �

Note that the saddle point is chosen to be the solution of the equation

n = −f1(r)− φ1(v, r). (33)

So far nothing is known about the solution of Equation (33), we do not even
know if a solution exists. For that we need the following lemma:

Lemma 6. For any integer j ≥ 1,

φj(v, r) ∼ (−1)jj!C(v, d)r−(j+1), (34)

where

C(v, d) =

∫ 1

0

log(1 + vxd(1− x))

x
dx, (35)

these estimates are all uniform for |v| ≤ δ.

Proof. We write φ(v, τ) as

φ(v, τ) =
∑
λ

∑
k≥1

(−1)k+1e−kdλτ (1− e−λτ )k
vk

k

=
∑
k≥1

(−1)k+1 v
k

k

∑
λ

e−kdλτ (1− e−λτ )k.

Then

φj(v, r) =
∑
k≥1

(−1)k+1 v
k

k

∂j

∂jτ

∑
λ

e−kdλτ (1− e−λτ )k|τ=r

and we have the following Mellin transform:

M
(
φj(v, r), s

)
= (−1)jα(k, d, s− j)Γ(s)ζ(s− j),

where

α(k, d, s) =
∑
k≥1

(−1)k+1 v
k

k

k∑
l=0

(−1)l
(
k

l

)
1

(kd+ l)s
,

which is a Dirichlet series uniformly convergent in the right half-plane if
|v| < 1/2 . Applying Lemma 4 to the function φj(v, r) for fixed v and j, this
gives us the asymptotic formula in (34) with

C(v, d) = α(k, d, 1) =

∫ 1

0

log(1 + vxd(1− x))

x
dx.

�
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Lemma 6 along with the approximation of fk(r) in (15) imply the fol-
lowing

fk(r) + φk(v, r) ∼ (−1)kk!
(π2

6
− C(v, d)

)
r−(k+1) (36)

for any k ≥ 1. Furthermore, the constant C(v, d) can be made arbitrarily
small by making v = u − 1 small. From these observations, it follows that
for fixed small v the function on the right hand side of (33) is a monotone
decreasing function of r for 0 < r < ε for some ε > 0, and so there is a unique
positive r = r(u, n, d) satisfying Equation (33) provided that n is sufficiently
large. One can already deduce an asymptotic relation

r−1 ∼

√
6n

π2 − 6C(v, d)
(37)

as n→∞. We are now able to apply the saddle-point method.

Theorem 7. The following asymptotic formula holds:

Qn(v + 1) =
1√

2π(f2(r) + φ2(v, r))
enr+f(r)+φ(v,r)(1 +O(n1/7)) (38)

as n→∞, uniformly for |v| ≤ δ.

Proof. Use Lemma 5 and Lemma 6 and apply the saddle point method in
the same way as before. �

Now we go back to the formula for the moment generating function
given in Equation (29). We shall adopt some new notations for the remaining
part of this section so x will denote a fixed real number, v = ex/σn − 1,
r = r(v) and r0 = r(0). From Theorem 7 it is not hard to show that

Qn(v + 1)

Qn(1)
∼ exp

(
nr + f(r) + φ(v, r)− nr0 − f(r0)

)
. (39)

It remains to estimate the exponent of (39). We recall the relation between
n, v and r

n = −f1(r)− φ1(v, r).

Then by means of implicit differentiation we get

∂

∂v
r(v)

∣∣∣
v=η

=

∂
∂vφ1(v, r(η))

∣∣∣
v=η

f2(r(η)) + φ2(η, r(η))
. (40)

If |η| ≤ ex/σn − 1, then r0 and r(η) are asymptotically equal. Therefore

f2(r(η)) + φ2(η, r(η))� r−30 .

Also by a similar technique as in the proof of Lemma 6 one may get

∂

∂v
φ1(v, r(η))

∣∣∣
v=η

= O(r−20 ).
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Thus the difference r − r0 is a O(r0|v|), that is of order n−3/4 in terms of n.
And so

f(r)− f(r0) = f1(r0)(r − r0) + f2(r0)
(r − r0)2

2
+O(r

1/2
0 ). (41)

For φ(v, r) we use Taylor expansion with two variables

φ(v, r) = g(r0)v + φ1(0, r0)(r − r0)

+ h(r0)
v2

2
+ g1(r0)(r − r0)v + φ2(0, r0)

(r − r0)2

2
+O(r

1/2
0 ).

Adding up everything, we remain with

Qn(v + 1)

Qn(1)
∼ exp

(
g(r0)v +

(
− h(r0)− g21(r0)

f2(r0)

)v2
2

)
. (42)

Moreover,

v =
x

σn
+

x2

2σ2
n

+O
(x3
σ3
n

)
. (43)

Therefore,

Mn(x) ∼ exp
(

(g(r0)− µn)
x

σn
+

1

2

(
g(r0)− h(r0)− g21(r0)

f2

)x2
σ2
n

)
(44)

as n→∞. Then Theorem 1 follows by using the asymptotic formulas for the
mean and variance we proved in the first part of this section, together with
Curtiss’s Theorem [4].

3. Proof of Theorem 2
Here in this section d = d(n) is an increasing function of n, and we assume
that d(n)→∞ as n→∞. We shall keep the notations in Section 2 and note
that the function φ(v, τ), and thus also g(τ) and h(τ) are now functions of n
as d is a function of n.

Let us first assume that dn−1/4 →∞, then it is sufficient to show that
that the mean µn tends to 0, since we are dealing with a nonnegative random
variable $n, and Markov’s inequality will give us the desired result. Indeed,
we still have

µn ∼
enr

2πQn(1)

∫ r1+β

−r1+β
exp

(
nit+ f(r + it)

)
g(r + it)dt,

where r is determined by the equation

n =
∑
λ

λ

eλr − 1
.

So it suffices to show that g(r + it) goes to 0 uniformly in t (|t| < r1+β). We
have

|g(r + it)| ≤
∑
λ

e−dλr|1− e−λ(r+it)|,
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for λ ≥ r−1 we have∑
λ≥r−1

e−dλr|1− e−λ(r+it)| �
∑
λ≥r−1

e−dλr � r−1e−d,

and the latter is smaller than any power of n−1. For λ < r−1,∑
λ<r−1

e−dλr|1− e−λ(r+it)| �
∑
λ

e−dλr(1− e−λr)� 1

d2r
.

Therefore, µn → 0 as n→∞, and by Markov’s inequality we have

lim
n→∞

P
(
$n ≥ ε

)
= 0 (45)

for any ε > 0, which proves the convergence in probability to the degenerate
random variable with support at 0.

Now for the remaining case d = O(n1/4), we follow the lines in Section
2, but one needs asymptotic estimates for the functions gk(r) and hk(r). We
cannot directly use Lemma 4 since d and r are somehow related and this
might affect our estimates. But we use the same approach as in the proof of
Lemma 4 in [6]. We have the Mellin transform

M(gk(r), s) = (−1)k(d−s+k − (d+ 1)−s+k)Γ(s)ζ(s− k).

We want to show that the main term in the asymptotic formula of gk(r) is
still

(−1)kk!

d(d+ 1)
r−(k+1).

That is the case if∣∣∣ ∫ c+i∞

c−i∞
(d−s+k − (d+ 1)−s+k)Γ(s)ζ(s− k)r−sds

∣∣∣ = o
( 1

d2rk+1

)
for c < 1. Let us just prove this for the case k = 0, and the other cases are
obtained in a similar way. So let 0 < c < 1; then we have∣∣∣ ∫ c+i∞

c−i∞
(d−s − (d+ 1)−s)Γ(s)ζ(s)r−sds

∣∣∣
≤ (dr)−c

∫ c+i∞

c−i∞

∣∣∣(1− ds

(d+ 1)s

)
Γ(s)ζ(s)

∣∣∣ds
� 1

dc+1rc
.

To check the last line, for every real number t we have

|Γ(c+ it)ζ(c+ it)| ≤ c1e−c2t

for some positive constants c1 and c2, and∣∣∣1− dc+it

(d+ 1)c+it

∣∣∣ =
∣∣∣1− (1− 1

d+ 1

)c
eit log(d/(d+1))

∣∣∣
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which is O(max{t/d, 1/d}) if |t| ≤
√
d and O(1) for |t| >

√
d as n→∞ where

the implied constants are independent of t. Therefore we have

g(r) =
1

d2r
+O

( 1

dc+1rc

)
as (n, r)→ (∞, 0). Similarly for h(r), we have the Mellin transform

M(hk(r), s) = (−1)k((2d)−s+k − 2(2d+ 1)−s+k + (2d+ 2)−s+k)Γ(s)ζ(s− k).

Again for the case k = 0,∣∣∣ 1

(2d)c+it
−2

1

(2d+ 1)c+it
+

1

(2d+ 2)c+it

∣∣∣
≤ 1

(2d)c

∣∣∣1− 2
(

1− 1

2d+ 1

)c+it
+
(

1− 1

d+ 1

)c+it∣∣∣,
then for |t| ≤

√
d, the latter is a O((t2 + 1)/dc+2) and O(1/dc) for |t| >

√
d.

Therefore

h(r) =
( 1

2d
− 2

2d+ 1
+

1

2d+ 2

)
r−1 +O

( 1

dc+2rc

)
as (n, r)→ (∞, 0).

Therefore the mean and variance are asymptotically equal as n goes to
infinity, more precisely:

µn ∼
√

6n

πd(d+ 1)
and σ2

n ∼
√

6n

πd(d+ 1)
. (46)

We shall now establish an asymptotic formula for Qn(u). Note first that the
statement of Lemma 5 is valid in this case, and for Lemma 6 one may easily
show (by using the same idea in the proof) that for a fixed positive integer j
and sufficiently large n we have

φj(u, r) = O(vr−1)

as r → 0, and the implied constant is independent of n. Therefore, for some
positive constant δ the following asymptotic formula still holds:

Qn(v + 1) =
1√

2π(f2(r) + φ2(v, r))
enr+f(r)+φ(v,r)(1 +O(n1/7)) (47)

as n → ∞ uniformly for |v| ≤ δ, where r = r(v, n) is the unique positive
solution of the equation

n = −f1(r)− φ1(v, r).

If d = o(n1/4), then both the mean and variance tend to infinity so
we shall consider the normalised random variable whose moment generating
function can be expressed as

Mn(x) = e−xµn/σn
Qn(ex$n/σn)

Qn(1)
.
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By the same arguments that we used to deduce Equation (42) we obtain the
asymptotic formula

Mn(x) ∼ exp
(
− xµn

σn
+ g(r)(ex/σn − 1)

)
(48)

as n → ∞. Thus Equation (48) along with the formulas for the mean and
variance implies

Mn(x) ∼ ex
2/2

which proves convergence to the normalised Gaussian distribution by using
Curtiss’s Theorem again.

If d ∼ αn1/4, then both the mean and variance tend to a constant√
6

πα2 . We want to estimate the probability generating function, so let us fix a
sufficiently small δ > 0 and assume that |u− 1| ≤ δ. Then we have

E(u$n) =
Qn(u)

Qn(1)
∼ exp

(
n(r − r0) + f(r)− f(r0) + φ(u− 1, r)

)
as n → ∞, here we use the same notations as in the previous section. First
we need to estimate the difference r − r0, so let |η| ≤ |u− 1| ≤ δ. Then

∂

∂v
φ1(v, r(η))

∣∣∣
v=η

= −
∑
λ

λe−dλr(η)
(
d− (d+ 1)e−λr(η)

)
(1 + ηe−dλr(η) − ηe−(d+1)λr(η))2

� g1(r(η))

� 1

r0
.

Hence |r − r0| � n−1. So, since f1(r0) = −n,

n(r − r0) + f(r)− f(r0)� f2(r0)n−2 � n−1/2

and

φ(u− 1, r) = (u− 1)g(r) +O(n−1/4)

=

√
6

πα2
(u− 1) + o(1).

Finally we deduce that
E(u$n) ∼ e

√
6

πα2 (u−1)

as n → ∞, which proves the convergence to the Poisson distribution with
parameter

√
6

πα2 . This completes the proof of Theorem 2.

4. Generalisation
As we mentioned in the introduction we shall see how these results change
when we deal with partitions into elements of an arbitrary sequence λ. So
from now on λ is a sequence of nondecreasing positive integers (λ1, λ2, λ3 · · · )
such that λk tends to infinity when k tends to infinity. The notations

∑
λ

and
∏
λ now stand for the sum and product taken over the sequence λ. Then

we have the following theorem:
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Theorem 8. If the sequence λ satisfies the conditions (M1) to (M3) of the
Meinardus scheme then the number of parts of multiplicity d in a random
λ-partition of n is asymptotically normally distributed where the mean and
variance are given by the asymptotic formulas:

µn ∼
(

1

dα
− 1

(d+ 1)α

)
Γ(α)A

(Aζ(α+ 1)Γ(α+ 1))α/(α+1)
nα/(α+1)

and

σ2
n ∼

( 1

dα
− 1

(d+ 1)α
− 1

(2d)α
+

2

(2d+ 1)α
− 1

(2d+ 2)α

−
( 1

dα
− 1

(d+ 1)α

)2 α

(α+ 1)ζ(α+ 1)

) AΓ(α)nα/(α+1)

(Aζ(α+ 1)Γ(α+ 1))α/(α+1)

respectively, if d = o(nα/(α+1)2).
If d ∼ anα/(α+1)2 , then the limiting distribution is Poisson with param-

eter
AΓ(α+ 1)

aα+1
(
Aζ(α+ 1)Γ(α+ 1)

)α/(α+1)
.

And if dn−α/(α+1)2 →∞, then the limiting distribution is degenerate at zero.

We shall not present the proof of this theorem since it is essentially the
same as for ordinary partitions, and conditions (M1) to (M3) provide us with
the necessary tools we need. More precisely conditions (M1) and (M2) allow
us to apply the Mellin transform method to obtain asymptotic estimates for
the functions f , φ, g, h and their derivatives. The condition (M3) is needed
for the tail estimates in the saddle point method (just like in Lemma 5). See
for instance [8] for a similar use of these conditions.

The result in Theorem 8 works for fairly large varieties of sequences of
positive integer. For example all integer valued polynomials, where λn = P (n)
with an additional technical condition: gcd(P (n) : n ∈ Z) = 1, satisfies
the Meinardus scheme and so Theorem 8 applies. However, there are some
interesting sequences that fail to satisfy the conditions in this theorem, see
for instance [10]. One obvious example that one could think of is the case of
prime partitions. Condition (M3) is satisfied by the sequence of primes, as
shown by Roth and Székeres, see [12]. But the Dirichlet series associated to
the sequence of primes has a logarithmic singularity at 1, so clearly (M1) is
not satisfied, but one can still use the Mellin transform method by using a
Hankel contour, see [11] for a similar use of this technique. The final result
reads as follows:

Theorem 9. The number of parts with multiplicity d in a random prime par-
titions is:
• asymptotically normally distributed with mean and variance

µn ∼
1

πd(d+ 1)

√
12n

log n
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and

σ2
n ∼

(
1

πd(d+ 1)
− 1

2πd(d+ 1)(2d+ 1)
− 3

π3d2(d+ 1)2

)√
12n

log n

respectively, if d = o((n/ log n)1/4),
• Poisson with parameter

√
12

a2π if d ∼ a(n/ log n)1/4,
• degenerate at zero for d(n/ log n)−1/4 →∞.

5. Parts with multiplicity d or more in λ-partitions
The number of ascents of size d or more in a random partition of an integer
n has already been treated in [2] for fixed d, a result that can be expressed
in the language of multiplicities since there is a one-to-one correspondence
between partitions having parts multiplicity d and partitions with ascents of
size d. So for completeness we shall give a generalisation of this result for
λ-partitions. For this case we have the bivariate generating function

Q∗(u, z) =
∏
λ

(
1+(u−1)zλd

1−zλ

)
, (49)

where the product is taken over the sequence λ. The logarithm

φ∗(v, τ) =
∑
λ

log(1 + ve−λdτ ), (50)

is for our purposes actually easier to handle than the function φ(v, τ) but
the technique remains the same. There is a slight change though: a phase
transition occurs when d ∼ an1/(1+α), and the limiting distribution in this
case is not Poisson. This can be shown by the following simple argument: the
probability generating function can be expressed as

Q∗n(u)

Q∗n(1)
∼ enr

2πQ∗n(1)

∫ r1+β

−r1+β
eφ
∗(u−1,r+it) exp

(
nit+ f(r + it)

)
dt (51)

as n→∞, where r is the unique positive solution of the equation

n =
∑
λ

λ

erλ − 1
,

and β is an arbitrary constant such that α
3 < β < α

2 . It follows that

r ∼
(
Aζ(α+ 1)Γ(α)

)1/(α+1)

n−1/(α+1).

Moreover, we have

φ∗(u− 1, r + it) = φ∗(u− 1, r) +O(rβ)

uniformly for |t| ≤ r1+β . Therefore for a fixed real number u we have

Q∗n(u)

Q∗n(1)
→
∏
λ

(1 + (u− 1)e−λκ)
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as n→∞, where

κ = a(Aζ(α+ 1)Γ(α+ 1))1/(α+1).

Hence the final result reads as follows:

Theorem 10. If the sequence λ satisfies the conditions (M1) to (M3) of the
Meinardus scheme, then the number of parts of multiplicity d or more in
a random λ-partition of n is asymptotically normally distributed, where the
mean and variance are given by the asymptotic formulas:

µn ∼
1

dα
Γ(α)A

(Aζ(α+ 1)Γ(α+ 1))α/(α+1)
nα/(α+1)

and

σ2
n ∼

( 1

dα
− 1

(2d)α
− α

d2α(α+ 1)ζ(α+ 1)

) AΓ(α)nα/(α+1)

(Aζ(α+ 1)Γ(α+ 1))α/(α+1)

respectively, if d = o(n1/(α+1)).
If d ∼ an1/(α+1), then the limiting distribution is a series of Bernoulli

variables ∑
λ

Be(e−λκ),

this series converges almost surely.
If dn−1/(α+1) →∞ then the limiting distribution is degenerate at zero.

For the case of ordinary partitions, α = 1, and this gives the result
proved in [2, last section]. But also, for d = 1, the number of parts having
multiplicity d or more is equal to the total number of distinct parts in random
λ-partitions, a case that has already been treated in [7] and [8].
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