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1 Introduction

Definition:

Mixtures are superimpositions of simpler com-
ponent distributions depending on a parameter,
itself being a random variable with some known
distribution.

A probability distribution is said to be a mixture
iIf its pdf can be written in the form

Fla)= [ f@INg()dr 1)

or

fl@)y=2 f(zlA)g(N) (2)
A

where g () is the mixing distribution.



Particular Case:

Mixed Poisson distribution:

e~ A\
F@) =[S gy ar )
or
e ANT
F@) =2 ) (4
T

where f (x) Is the mixed Poisson distribution.



2 Problem Statement

Consider the mixed Poisson distribution given
by,

e~ A\

f@)= [ “—g(\)dxr

where g (\) is a mixing distribution.

The major problem in constructing or obtain-
Ing mixture distributions with continuous mix-
ing distributions is the evaluation of the above
integrand as Albercht (1984) stated. Only a few
integrands can be evaluated explicitly, therefore,
alternative methods had to be sought.



3 Objectives

Main objective: To review some methods of de-
termining Mixed Poisson distributions.

Specific objective: To obtain the Mixed Poisson
distributions through

e Direct integration where possible,

e Recursive formulae,

e Laplace Transform technique and

e Use of special functions.



4 Significance

Mixed Poisson distributions are used for model-
Ing non - homogeneous populations.

In Actuarial applications, they are handy in mod-
eling the distribution of total claims payable by
an insurer. This is because the observed data
on the number of claims often exhibit a variance
that noticeably exceeds their mean.



5 Literature Review

The derivation of Mixed Poisson distribution
goes back to 1920 when Greenwood and Yule
considered NBD as a mixture of a Poisson dis-
tribution with a Gamma mixing distribution.

Taking a mixture of the Poisson distribution
with a normal distribution truncated at the left

at zero, then we have a Poisson-Normal distri-
bution, (Patil, 1964).

The Poisson-Linear Exponential distribution is
obtained by formally mixing the Poisson distri-
bution with the linear exponential family of dis-
tributions, (Sankaran, 1970).

Some generalizations of the concept have been
studied by applying a generalized gamma dis-

tribution resulting in a generalized form of the
NBD (Gupta, R.C. and S.H. Ong, 2005).



Recently, Zakerzadeh and Dolati, (2010) gener-
alized the Lindley distribution to obtain a Gener-
alized Lindley distribution. Taking this distribu-
tion as the mixing density, Mahmoudi and Zak-
erzadeh, (2010) obtained a Generalized Poisson
- Lindley distribution.

Willmot (1993) obtained recursive formulae for
several Mixed Poisson distributions such as; Neg-
ative Binomial distribution, Sichel distribution,
Poisson Beta distribution, etc.



6 Constructing Mixed Poisson Dis-

tributions

6.1 Explicit Forms

The mixing distributions considered here include:
Exponential, Gamma, Lindley, Generalized Lind-
ley, Zero - Truncated Normal and Linear Expo-
nential Family.

lllustration: Generalized Lindley Distribution

e~ A\

@)= [ =g (V) ar




Figure 1: A General Framework for a Poisson Mixture
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Figure 2: A Framework for Constructing Poisson Mixtures
with Continuous Prior Distributions
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Figure 3: Direct Route
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Figure 4. Expectation Route
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Figure 5: Approximation Route
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A result obtained by Mahmoudi & Zakerzadeh,
(2010).



6.2 Recursive Relations

The recursive relations for various mixed Pois-
son distributions were obtained by evaluating

e—)\)\a:

fla)= [ =g (3 dx

using integration by parts.

A number of Mixed Poisson distributions were
obtained for several mixing distributions such
as: Rectangular, Inverse Gaussian, GIG, Gamma
& Generalized Gamma, Beta, etc.

lllustration: Gamma with two parameters

g(\) = %e—”/\a—l; A>0,a>08>0 (7)



The recursive relation is

T+ « 1
f(x4+1)= (x—l—l) (m)f(az);azzo,l,z...
(8)

A result obtained by Panjer & Willmot, (1992).




6.3 Laplace Transforms

The Mixed Poisson distribution is expressed as:

fa)=" (-1 1§ (1) ()

where Lf\x) (1) is the xth derivative of the Laplace
Transform of the mixing distribution.

lllustration: Exponential with one parameter

g(\) = pe " A >0 (10)
0
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This result is similar to that obtained by direct
Integration.



6.4 Special Functions

The mixed Poisson distribution is obtained by
comparing its integrand with a special function;
in this case with a Confluent Hypergeometric
distribution of the second kind given by:

e—a:tta—l

1 o0
W“”wﬁﬁﬁﬁﬂ Aot 1)

lllustration: Lomax Distribution

g\ = a>0,>0,A>0 (14)
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Comparing (13) and (15), then

!

f(r)=af*VW(x+ 1,2 —a+1;p3) (16)



7 Conclusion

Some mixed Poisson distributions can be ob-
tained using more than one of the methods con-
sidered in this work. For instance, to obtain
Negative Binomial distribution, the method of
explicit evaluation and that of using the Laplace
Transform with Gamma as the mixing distribu-
tion were used. The two methods yielded the
same result. This is a clear indication that there
Is no restriction on what kind of method to use
for a particular given mixing distribution, that
Is, any method can be used wherever possible.

More work can be done using the methods of
construction already used and also other meth-
ods can be studied or researched on.

Properties of Mixed Poisson distributions.



