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Abstract

This dissertation calibrates the Vasicek term-structure model to the evolu-
tion of interest rate dynamics in Kenya. This is done for both a single-state
and a multi-state model using state estimated under a Hidden Markov Model
(HMM). The findings of this paper provide a starting point for the manage-
ment of the risk posed by interest rate-dependent instruments.

The Vasicek model is calibrated using monthly observations of the 91-day
Treasury bill rate from September 1994 to July 2014 as a proxy for the short
rate. Key results show an increase in the mean reversion parameter with an
increase in the number of states, suggesting higher stability of states. The
volatility is observed to move independently of the level of the interest rate,
supporting the idea that risk is not necessarily a function of the level of the
interest rate but rather related to the inherent variability of rates in a par-
ticular state. Findings from this parameter estimation provide support for
interest rate models that incorporate regime switches.

Keywords: Vasicek model, hidden Markov model(HMM), regime-switches,
calibration
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Chapter 1

Introduction

1.1 Overview
One of the most important concepts in finance is the time value of money; the
idea that cash today is worth more than a similar amount of cash in future.
The measure that allows assignment of value across time is the interest rate
and its application is critical in every aspect involving intertemporal transfer
of funds.

Interest rate is the compensation you would require to forego consumption
today in return for a higher amount in future. As this concept is so well ac-
cepted, and its application so frequent, it may seem that no formal treatment
is required. However, to determine the dynamics of interest rate-dependent
financial variables, or to manage the risk exposure presented by such assets,
a completely different set of challenges is faced that cannot be left to anecdo-
tal evaluation. Indeed, Cuchiero (2006) notes that although the concept of
interest rates is so pervasive, managing interest rate risk presents a distinct
level of complexity that is best dealt with in formal mathematical modeling.

Given the importance of understanding interest rate dynamics and the exten-
sive areas of application, there is a significant body of knowledge developed
covering the theory and practice of interest rate modeling. However, this
extensive literature has not extended to empirical work in the Kenyan mar-
ket. This research focuses on the modeling of interest rate dynamics in the
context of regime switches. The goal is to provide an empirical evaluation
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of the behaviour of short-rate model parameter estimates in the context of
regime switches.

1.2 Background to the study

1.2.1 Overview of interest rate modeling
Models of interest rate dynamics are integral to the pricing of fixed income
and derivative instruments. Mathematical interest rate models have stemmed
from the need to adequately model and manage the risk presented by future
movements in interest rates.

As a result, various interest rate models have been developed in an attempt
to answer the questions of; 1) which quantities and dynamics should be
modeled? 2) How should their randomness be modeled? and 3) what the
valuation consequences of the different approaches are (Brigo, 2007). Interest
rate modeling theory has followed four key veins in an attempt to answer
these questions:

1. Modeling the short rate

2. Modeling the instantaneous forward rates

3. Modeling of forward market-rates

4. Market rate modeling with volatility smile extensions

While the models have different levels of complexity, all formulations have
different applications including advanced pricing, rating practice as well as
risk management. (Brigo, 2007).

This research focuses on short rate models, particularly the Vasicek model
which captures the mean-reversion element of interest rates while retain-
ing analytical tractability. Other short-rate models have been developed
which include the Cox-Ingersoll-Ross model, the Dothan model, the Black-
Derman-Toy model, the Ho-Lee model, and the Hull-White (Extended Va-
sicek) model. These models remedy some of the weaknesses of the Vasicek
model, including the possibility of negative rates in the Vasicek model, but
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lose the computational tractability offered by use of a Gaussian distribution.
On the other hand, models of the instantaneous forward rate, and particu-
larly the model by Heath et al. (1992) capture the full dynamics of the yield
curve, but are non-Markovian. This makes the model computationally in-
tractable, and reduces its attractiveness for this study. Finally, market rate
models present a good class of models that allow direct modeling of observ-
able bond prices, as opposed to unobserved variables used in the short-rate
and forward rate models. In the Kenyan context, quality data on bond prices
is a challenge, which limits the use of bond-price based models. It is also
observed that the additional complexity of the LIBOR market models, while
increasing the pricing accuracy, is less relevant for the Kenyan context where
the spectrum of available interest rate derivative instruments remains narrow
and fairly unsophisticated.

Short-rate term structure modeling

Under short-rate term-structure modeling, the interest rate, r(t) is modeled
as a stochastic differential equation with a drift and a diffusion component.
Each short-rate model specifies a different evolution for the dynamics of r(t).
Risk management is most suitably addressed by tractable short-rate models
due to computational ease, which makes them attractive for a large number
of firms. In contrast, pricing models require higher precision in the distribu-
tion which is not provided by short-rate models. (Brigo, 2007). Short-rate
modeling is discussed in greater detail in subsequent sections.

Forward rate modeling

These models incorporate more parameters and were developed to accom-
modate more flexible option structures as well as give less-correlated rates at
future times. (Brigo, 2007)

Following Brigo (2007), the market-based forward LIBOR at time t between
T and S is defined as,

F (t;T, S) =
P (t,T )
P (t,S) − 1
S − T

. (1.1)
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In the limit as S tends to T , the instantaneous forward rate is given as:

f(t, T ) = lim
T→S

F (t;T, S) (1.2)

=− ∂lnP (t, T )
∂T

, f(t, T ) = r(t) (1.3)

Given the flexible dynamics of r, there are restrictions to the dynamics
allowed for f . This is a fundamental theoretical result due to Heath et al.
(1992), more commonly referred to as HJM. If no arbitrage is to hold, and
by setting f(0, T ) = fMarket(0, T ), under the risk-neutral measure:

df(t, T ) = σ(t, T )
(∫ T

t
σ(t, s)ds

)
dt+ σ(t, T )dW (t), (1.4)

is obtained.

This relation links the local mean to the local standard deviation by the no-
arbitrage property of interest rate dynamics. This is different from models
based on drt, where the whole risk neutral dynamics was free.

The Heath et al. (1992) model serves as a useful framework by which various
no-arbitrage interest-rate models can be unified. In practice however, any
useful models coming out of the HJM are either the short-rate models or
Market models.

Modeling of Forward Market rates

Modeling for LIBOR market models (LMMs) involves outlining families of
forward rates, Fi spanning i associated with the relevant forward rate agree-
ments rather than modeling either r or f .

The forward LIBOR rate between Ti−1 and Ti, at time t is defined as:

Fi(t) =
P (t,Ti−1)
P (t,Ti) − 1

(Ti − Ti−1) (1.5)

The LMM is compatible with Black's market formula and provides a rigorous
arbitrage free justification for the formula. The quantities in the LIBOR
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market models are structured because they are forward rates coming from
expectations of objects involving r. In particular, the LIBOR market model
was developed starting from instantaneous forward-rate-dynamics in Brace,
Gatarek and Musiela (1997), although it is possible to obtain it also through
the change-of-numeraire approach. (Brigo and Mercurio, 2006)

Volatility smile extensions of Forward Market models

This recent extension of interest rate modeling involves incorporation of
volatility smile effects. The volatility smile effect applies extensively to option
contracts and is expressed in terms of market rates volatilities. Therefore,
models incorporating volatility smiles are market models rather than short-
rate or forward-rate models.

Brigo (2007) outlines two main approaches to accommodate the volatility
smile effects:

• Local volatility models: Here σ2 is specified as a function of the underly-
ing. Local volatility models include the Constant Elasticity of Variance
(CEV) model and the Displaced diffusion model. As there is no new
randomness added to the system as time moves on, the models imply
a volatility smile that flattens in time.

• Stochastic volatility models: Under this family of models, σ2 is specified
as a new stochastic process, adding new randomness to the volatility.
Consequently, volatility becomes a variable with a new random life
of its own that could be correlated with the underlying. Stochastic
volatility models include the Heston Stochastic Volatility model (1993)
or the more simplistic and popular Stochastic Alpha Beta Rho (SABR)
model (2002)

1.2.2 Interest rate modeling in Kenya
Interest rate modeling in Kenya so far has focused on more descriptive ap-
proaches. Few models have focused on evaluating the interest rate models
that incorporate the empirical dynamics of the interest rate in Kenya.
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In analysing interest rate dynamics in Kenya, Caporale and Gil-Alana (2010)
examine the stochastic properties of the interest rate spread to provide use-
ful information about the effects of shocks and appropriate policy responses.
They test the stationarity of the interest rate series. They reject the hypoth-
esis of mean reversion in the interest rate process. They estimate the orders
of integration to be equal to or higher than 1 in all cases. For interest rate
spreads, mean reversion is only found in the case of the deposits-Treasury
bill rate spread under the assumption of autocorrelated errors.

To understand interest rate dynamics, Ngugi (2001) focuses on the factors
influencing the interest rate spread. Her work focused on the dynamics of the
interest rate spread over time and she demonstrates that the spread changes
significantly, in line with policy as well as economic conditions. This provides
support for an evaluation of interest rate dynamics that incorporates regime
switches.

Olweny (2011) focuses on the link between short-term volatility of the interest
rate and the level of interest rates in Kenya using the Treasury bill rates from
August 1991 to December 2007. His findings indicate that the volatility is
positively correlated with the level of the short-term interest rate. He also
finds that the GARCH model is better suited for modeling volatility of short
rates in Kenya, compared to ARCH models.

1.3 Problem statement
Modeling and estimating the dynamics of interest rates is critical in the pric-
ing of bonds, options and other derivatives. While there is a large volume
of interest rate modeling theory, very little has been done to evaluate the
performance of such models in Kenya, particularly under regime switching.

This research aims to contribute to both the theory and practice of interest
rate modeling in Kenya. This evaluation will also involve incorporation of
regime-switches to the Vasicek model in line with changing underlying eco-
nomic variables.

The results of this analysis form a good foundation for the pricing and risk
management for interest rate dependent securities and derivatives. In this
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way, this research provides both theoretical as well as practical insights to
the interest rate risk management in Kenya.

1.4 Research objectives
This dissertation studies questions related to modeling of the short-rate in
Kenya. The research seeks to answer the primary question of what the pa-
rameters of a good model of the short-term interest rate should be in the
context of regime switches.

1.4.1 Specific objectives
The main goals of this dissertation can be summarised as:

• Parameter estimation for the Vasicek model.: What are the parameters
of the Vasicek model when applied to Treasury bill rates in the Kenya?

• Evaluation of impact of regime switches on parameter estimates.: What
is the behaviour of the estimated parameters when regime switching ia
introduced in modeling the underlying interest rate process?
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Chapter 2

Literature review

2.1 Overview of interest rate theory
This section provides an overview of key definitions and concepts in interest
rate modeling. Following the approach used in Cuchiero (2006), key concepts
on the short-term interest rate, zero-coupon bond and no-arbitrage pricing
are expounded upon. Additional derivations and relationships are available in
Brigo and Mercurio (2006), Bjork (2009) and Musiela and Rutkowski (2005).

2.1.1 Definition: Short-term interest rate
A risk-free security, compounded continuously at a risk-free considered to be
the instantaneous / short-term interest rate is defined as follows:

Let rt denote the rate for risk-free borrowing or lending at time t over the
infinitesimal time interval [t, t+dt]. The rate rt is assumed to be an adapted
process on a filtered probability space (Ω,F ,P, (F(t)0<t<T ∗) for some T ∗ >
02, with almost all sample paths integrable on [0, T ∗]. B(t) = B(t, ω) is
defined to be the value of the bank account at t > 0 that evolves for almost
all ω ∈ Ω according to the differential equation:

dB(t) = r(t)B(t)dt,with B(0)=1 (2.1)
Consequently:

B(t) = exp
(∫ t

0
r(s)ds

)
for all t ∈ [0, T ∗] (2.2)
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Therefore, Bt allows the relation of two amounts of currency available at
different points in time.

Stochastic discount factor

The stochastic discount factor D(t, T ) is the value at time t of one unit of
cash payable at time T > t and is given by:

D(t, T ) = B(t)
B(T ) = exp

(
−
∫ T

t
r(s)ds

)
(2.3)

2.1.2 Definition: Zero coupon bond
A zero-coupon bond of maturity T is a financial security paying one unit of
cash at a pre-specified date T in the future without intermediate payments.
The price at time t < T is denoted by P (t, T ). P (T, T ) = 1.

Note that there is a close relationship between the zero-coupon bond price
P (t, T ) and the stochastic discount factor D(t, T ). Actually, P (T, T ) cor-
responds to the expectation of D(t, T ) under the risk neutral probability
measure. (Cuchiero, 2006)

2.2 The no-arbitrage term-structure equation
The absence of arbitrage opportunities between all bonds with different ma-
turities and the bank account is the fundamental economic assumption in-
forming interest rate theory.

A family P (t, T ), t < T < T ∗ of adapted processes is called an arbitrage-free
family of bond prices relative to r if the following conditions hold:

1. P (T, T ) = 1 for all t ∈ [0, T ∗], and

2. There exists a probability measure P∗ on (Ω,FT ∗) equivalent to P, such
that for all t ∈ [0, T ], the discounted bond price:

P̃ (t, T ) = D(0, T )P (t, T ) = B(0)
B(t)P (t, T ) = P (t, T )

B(t) (2.4)

is a martingale under P∗.
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A probability measure P∗ that satisfies the conditions of the definition above
is called a martingale measure for the family P (t, T ). This definition is
based on the general result that arbitrage opportunities are absent given the
existence of an equivalent martingale measure in a standard market model.
Given that P (t, T ) follows a martingale under P∗:

P̃ (t, T ) = EP∗

(
P̃ (T, T )|Ft

)
for t ≤ T. (2.5)

Therefore,

D(0, T )P (t, T ) = EP∗ (D(0, T )P (T, T )|Ft) = EP∗ (D(0, T )|Ft) , (2.6)

Which leads to the following expression for the bond: price:

P (t, T ) = D(0, T )−1EP∗ (D(0, T )|Ft) (2.7)

= exp

(
−
∫ T

t
r(s)ds

)
EP∗

(
exp

(
−
∫ T

t
r(s)ds

)
|Ft
)

(2.8)

= EP∗

(
exp

(
−
∫ T

t
r(s)ds

)
|Ft
)

= EP∗ (D(t, T )|Ft) (2.9)

Thus P (t, T ) corresponds to the expectation of the stochastic discount fac-
tor D(t, T ) under P∗. The no-arbitrage bond prices are directly obtained.
These are a special case of the general no-arbitrage prices associated with an
attainable contingent claim H given by:

πt = EP∗ (D(t, T )H|Ft) (2.10)

Where it is assumed that the price process P (t, T ) follows a strictly posi-
tive and adapted process on a filtered probability space (Ω,F ,P, (Ft)0≤t≤T ∗),
where the filtration Ft is again the P-completed version of the filtration gen-
erated by the underlying Brownian motion. (Cuchiero, 2006)

2.3 Key literature

2.3.1 Term structure models
Term structure modeling in continuous time lends itself to various approaches.
Most frequently, the short term interest rate is assumed to follow a diffusion
process. Bond prices are determined as solutions to a partial differential
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equation which places restrictions on the relationship of risk premia of bonds
with different maturities. The challenge with this approach is that it is
particularly difficult and cumbersome to fit the observed term structure of
interest rates within the simple diffusion model. (Svoboda, 2002).

The Vasicek (1977) model was the first to make a significant impact on in-
terest rate modeling. The model makes assumptions about the stochastic
evolution of interest rates by exogenous specification of the short-term inter-
est rate process. The Vasicek and most other models are partial equilibrium
models. Beliefs about future realizations of the short-term interest rate are
taken as inputs and used to make assumptions about investor preferences (as
specified by the market prices of risk).

A later approach used by Cox et al. (1985) starts with the specification of
an equilibrium economy which forms the foundation for specification of the
model. The model makes assumptions about the stochastic evolution of ex-
ogenous state variables and investor preferences. The equilibrium economy
provides for endogenous derivation of the form of the short rate and hence
the prices of contingent claims. Production opportunities, investor tastes
and beliefs about future states of the world provide an exogenous specifica-
tion of the economy from which bond prices are derived, to make the CIR a
complete equilibrium model.

The relationship between interest rates and bonds with different maturity
times is given by the term structure of interest rates. For this research, we
calibrate the Vasicek model which directly models the dynamics of the instan-
taneous short rate r(t). The annualized interest rate for an infinitesimally
short time period is taken to be the short rate, but in practice the three-
month rate is considered a better approximation of the short-rate. (Van Elen,
2010). This research uses the 91-day Treasury bill rate as a proxy for the
short-rate.

Following Van Elen (2010), the short rate is defined as:

r(t) = R(t, 0) = lim
T→0

R(t, T ), (2.11)

where t denotes a moment in time, T , the time to maturity and R(t, T ) the
corresponding interest rate. Let P (t, T ) denote the value of a zero-coupon
bond at time t that pays 1 at maturity time T , and R(t, T ) the corresponding
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interest rate. In continuous time, this is found to be:

P (t, T ) = exp (−R(t, T )(T − t)) (2.12)
Rewriting the equation above yields a way to describe the interest rate as a
function of the value of a bond:

R(t, T ) = − 1
T − t

log (P (t, T )) . (2.13)

Since P (t, T ) is a simple discount factor, it is clear that R(t, T ) may not be
negative to make sure the discount factor as described in P (t, T ) lies between
0 and 1.

2.3.2 Vasicek model
The Vasicek model assumes that the instantaneous spot rate under the real-
world measure evolves as an Ornstein-Uhlenbeck(O-U) process with constant
coefficients. This is equivalent to assuming that r follows an O-U process with
constant coefficients under the risk-neutral measure for a suitable choice of
the market price of risk, t. Vasicek (1977) defines the short rate process as:

dr(t) = κ[θ − r(t)]dt+ σdW (t), r(0) = r0 (2.14)
where r0,κ, and σ are positive constants.
Integrating, for each s < t:

r(t) = r(s)e−κ(t−s) + θ(1− e−κ(t−s) + σ
∫ t

s
e−κ(t−u)dW (u), (2.15)

so that r(t) conditional on Fs has a normal distribution with mean and
variance given respectively by:

E[(r(t)|Fs] = r(s)e−κ(t−s) + θ(1− e−κ(t−s)) (2.16)

V ar[r(t)|Fs] = σ2

2κ [1− e2κ(t−s)], (2.17)

A major downside of the Vasicek model is that for each time t, the rate
r(t) can be negative with positive probability. Despite this, the analytical
tractability that is implied by a Gaussian density is hardly achieved when
assuming other distributions for the process r.
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Given the dynamics of the Vasicek model, the maximum-likelihood estimator
for the Vasicek model is now considered. The dynamics are expressed as:

dr(t) = [b− ar(t)]dt+ σdW 0(t) (2.18)
with b and a as suitable constants. By integration between any instants s
and t, r(t) conditional on Fs is normally distributed with mean r(s)e−a(t−s) +
b
a

(
1− e−a(t−s)

)
, and variance σ2

2a

[
1− e−2a(t−s)

]
.

The following functions of the parameters are estimated:

r(t) = r(s)e−a(t−s) + b

a

(
1− e−a(t−s)

)
+ σ

∫ t

s
e−a(t− u)dW 0(u) (2.19)

Calibration of parameters can be done using the Ordinary Least Squares
(OLS) method or by Maximum Likelihood Estimation(MLE). The MLE es-
timators for α, β, σ are derived as:

α̂ =
∑n
i=1 ri, ri−1 −

∑n
i=1 ri

∑n
i=1 ri−1

n
∑n
i−1 r

2
i−1

(∑n
i−1 ri−1

)2 (2.20)

β̂ =
∑n
i−1 ri − α̂ri−1

n(1− α̂) (2.21)

V̂ 2 = 1
n

n∑
i=1

[ri − α̂ri−1 − β(1− α̂)]2 (2.22)

The estimated quantities give full information on the transition probability
for the process r under Q0. This allows for simulations at one-day spaced
future time instants.

2.4 Modeling with regime switches
Most interest rate models, including those specified by Vasicek (1977) and
Cox et al. (1985), assume constant parameters over the relevant sample pe-
riod and are thus single-regime models. It is however likely that, over time,
the economic and political conditions that generate interest rates may change.
In such cases, the parameters of a model of the interest rate, or even the model
structure itself may change. Dahlquist and Gray (1998).
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In particular, Wu and Zeng (1991) find that regimes underlying interest rate
term structures are related to business cycles. The risk of regime shifts is
therefore likely a systematic risk.

Given that the stochastic behaviour of interest rates varies over time, regime
switching (RS) models constitute an attractive class of models to incorporate
the stochastic behavior of interest rates within a stationary model.(Ang and
Bekaert, 2001)

Short-term interest rates have two important empirical attributes.

• First is the mean reversion property of the process, modeled by letting
the next period's change in the short rate depend linearly on the current
level of the short rate.

• Second, is that the unconditional distribution of changes in the short
rate is leptokurtic.

These two effects are captured by considering a class of models that are
based on various continuous time/diffusion models, and extending this class
of models to allow for regime shifts.(Dahlquist and Gray, 1998).

This research uses the generalized regime-switching (GRS) model. The GRS
model nests the GARCH (1,1) model, a discretized diffusion model motivated
by Cox et al. (1985) model, and the Markov regime-switching model. (Gray,
1996)
The GRS model is generalized in the sense that:

• Each regime reverts at a different rate to a different long-run mean;

• Conditional variance in each regime takes a very general form incorpo-
rating level effects and GARCH effects consistent with a square root
process; and

• Switching probabilities are time-varying, depending on the level of the
short rate.

The basic premise of the GRS model is that, depending on the latent regime
indicator, the parameters of the conditional mean and conditional variance
process are allowed to take different values. (Gray, 1996).
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Chapter 3

Methodology

3.1 Estimation of parameters of term-structure
models

Two alternatives for estimating the term-structure model parameters are con-
sidered. The first option is to carry out a cross-sectional estimation where
parameter estimation is made at a fixed moment in time while considering
the different maturity times. The second alternative is a time-series esti-
mation, where maturity time is fixed and parameters are estimated while
considering the evolution of the interest rate over the different time periods
in the dataset. (Van Elen, 2010).

If one-factor term-structure models were true, then the difference between
time series and cross-sectional estimates should be small. Van Elen (2010)
shows that while models based purely on the short-rate may not be very re-
alistic in all scenarios, they might still do a good job in term-structure fitting.

The analysis in this dissertation uses monthly 90-day treasury bills as a proxy
for the instantaneous short rate.
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3.2 Model calibration and parameter estima-
tion

3.2.1 Calibration of the Vasicek model
To estimate the parameters, a discrete time version of the model is needed.
Following Van Elen (2010), the discrete version of the Vasicek model pre-
sented in Brigo (2007) is considered.

r(ti) = c+ br(ti−1) + σZ, (3.1)
where:

c = µ
(
1− e−θ∆t

)
, (3.2)

b = e−θ∆t, (3.3)

δ = σ

√
(1− e−2θ∆t)

2θ (3.4)

Here Z follows a standard normal distribution, the parameters θ, µ, and σ de-
note the parameters of the continuous Vasicek model and ∆t = t(i)−t(i−1).

Parameter calibration is carried out by an ordinary least squares (OLS) re-
gression, providing maximum likelihood estimators for the parameters c,b,
and δ. According to Brigo et al. (2008) the following expressions for θ, µ,
and σ, hold:

θ = −log(b)
∆t , (3.5)

µ = c

1− b, (3.6)

σ = δ√
(b2−1)∆t

2log(b)

. (3.7)

The values for θ, µ, and σ are derived directly by estimators via maximum
likelihood.
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b̂ = n
∑n
i=1 riri−1 −

∑n
i=1 ri−1

n
∑n
i−1 r

2
i−1 − (∑n

i=1 ri−1)2 , (3.8)

µ̂ =
∑n
i−1

[
ri − b̂ri−1

]
n
(
1− b̂

) , (3.9)

δ̂2 = 1
n

n∑
i=1

[
ri − b̂ri−1 − µ̂

(
1− b̂

)]2
. (3.10)

With these estimators and equations, estimators for θ and σ are readily
found.

3.2.2 Hidden Markov model (HMM) filtering
Analysis of the sample data indicates that the evolution of the Treasury bill
rate undergoes several distinct regimes characterized by states with high and
low means as well as high and low standard deviations. The regime-switching
model is proposed to capture such behaviour.

To determine the regimes for the interest rate, a Hidden Markov Model
(HMM) is used. Under the HMM, a prior state segregation of states is
not required, although, the number of states needs to be determined. The
parameter estimates under HMM are calculated through the expectations
maximization (EM) algorithm which requires initial values for the imple-
mentation. For this purpose, the initial values are found by employing a
least-square method on the first few data points.(Erlwein, 2008)

Hidden Markov Models are typically used to predict the hidden regimes of
observation data. Therefore, this model has found extensive applications in
areas such as speech recognition systems, molecular biology and financial
markets. In particular, it has been used in financial markets to determine
underlying economic regimes.(Erlwein, 2008).

For the case of interest rate modeling, there are a number of studies that have
used Hidden Markov Models as the basis for determining regime switches.
Elliott and Wilson (2007) use a hidden Markov Model in the context of
the Canadian term structure of interest rates. They find that a three-state
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Markov model provides a good framework for explaining data over a basic
model that excludes the Markov chain. Maheu and Yang (2015) develop an
infinite hidden Markov model for the short-term interest rates. The model
provides significant improvements in density forecasts as well as point fore-
casts. They find evidence of recurring regimes as well as structural breaks
in the empirical application. Munclinger (2011) explores the Brazilian term
structure in a hidden Markov framework. He applies a hidden Markov model
of the term structure to modeling the Brazilian swap rate curve. From this,
two regimes are identified, and are characterized as persistent, and are ex-
plained by the level and the slope of the term structure.

The HMM assumes that a Markov chain is embedded in the stochastic inter-
est rate process. The Markov chain itself is not observable, i.e., it is ”hidden”
in the observations. The aim in HMM filtering is to estimate the underlying
Markov chain and this is done by filtering the sequence xk out of the obser-
vations.(Erlwein, 2008). The underlying Markov chain xk is assumed to be
homogenous with finite state space in discrete time.(Erlwein, 2008).

Under the real world measure P, the Markov chain follows the dynamics:

xk+1 = πxk + vk+1 (3.11)

where π is the transition probability matrix and vk+1 is a martingale in-
crement. The observation process is denoted by yk and can follow various
types of dynamics.(Erlwein, 2008)

For the Vasicek model, the observation process yk : kεN is assumed to have
the form:

yk+1 = α(rk)yk + κ(rk) + ξ(rk)ωk+1 (3.12)
The filtrations generated by the process are defined as Fv = σ(y1, y2, ...),Fx =
σ(x1, x2, ...) and F = Fv ∨Fx. The derivation of optimal parameter esti-
mates is carried out under a reference probability measure under which the
observation process and the Markov Chain and independently and identically
distributed processes (IID)

Selecting the number of states for the HMM-based interest rate model can
be done with a penalized likelihood criteria. The optimal number of regimes
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for the proposed HMM-based interest rate model is determined by apply-
ing the Akaike Information Criterion (AIC). The derivation of this model
selection criteria is based on the Kullback-Leibler information and utilizes
the log-likelihood function of the model together with the number of model
parameters as the penalty term.(Erlwein, 2008)
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Chapter 4

Data analysis and results

4.1 Data description
This research uses the 91-day Treasury bill rate as a proxy for the instanta-
neous short rate to estimate the parameters of a single-regime and multiple-
regime Vasicek model. The sample is a dataset of 239 monthly observations
covering the period from September 1994 to July 2014. The data is provided
by the Central Bank of Kenya.

4.1.1 Motivation for different regimes
From the evolution of the 91-day Treasury-bill rate, significant changes are
observed in average level as well as the volatility of the process. The time-
series plot for the 91-day Treasury bill rate is shown in figure 4.1 below.
Preliminary analysis of the interest rate dynamic shows that the interest
rate model parameters are likely to have changed with different states of the
economy.
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Figure 4.1: Evolution of the 91-day Treasury bill rate from September 1994
to July 2014

Over the entire period, two distinct regimes are observed in the data. The
first regime has a high average interest rate which starts in September 1994
through to the end of year 2000. Subsequently, the 91-day rate takes a lower
average level. The two regimes point to significant changes in the underlying
process driving interest rates. This is partially explained by the start of a new
political regime at the end of 2002 and particularly by changes in underlying
economic variables.

4.2 Determination of regimes
The hidden Markov model is used to determine the different states over the
sample period. Implementation of a 2-state, 3-state and 4-state HMM filter
is done and the results observed are shown below.
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4.2.1 2-regime model
The HMM fitting procedure for a 2-state model converges at 21 iterations
with a LogLikelihood of 457.7127 and 7 degrees of freedom. Information
criteria are obtained as -901.4255 for the AIC and -877.0902 for the BIC.
The 2-state model starts with the assumption that the interest rate process
starts in state 2. Based on the HMM filtering, the transition probability
matrix in figure 4.2 below is obtained:

Figure 4.2: Transition probability matrix for the 2-state HMM model

State 1 has the highest same-state transition probability with a lower value
observed for state 2. This suggests higher stability for state 1 than state 2.

By assuming the interest rate process is Gaussian, the descriptive statistics
observed are shown in figure 4.3 below:

Figure 4.3: Descriptive statistics for the 2-state HMM model

It is observed that state 1 has a low long-term mean, and a low standard
deviation, while state 2 has a higher mean and standard deviation.

The graphical representation of state changes for the 2-state HMM model
are as shown in figure 4.4 below:
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Figure 4.4: Evolution of the 2-state HMM model applied to the 91-day Trea-
sury bill rate from September 1994 to July 2014

4.2.2 3-regime model
The HMM fitting procedure for a 3-state model converges at at 46 iterations
with a LogLikelihood of 501.2552 and 14 degrees of freedom. Information
criteria are obtained as -974.5105 for the AIC and -925.84 for the BIC.

The 3-state model, starts with the assumption that the interest rate process
starts in state 2. Based on the HMM filtering, the transition probability
matrix in figure 4.5 below is obtained:

Figure 4.5: Transition probability matrix for the 3-state HMM model

The 3 states are observed to have a high same-state transition probability
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with very low other-state transition probabilities. It is interesting to note that
there are no jumps from the extreme states (1 and 3) between each other.
The transition probability matrix suggests that the movement of interest
rates follows a gradual process, moving from one state, to the intermediate
state and finally getting to its final state. The absence of sudden, extreme
jumps suggest more stability for investors in interest rate dependent instru-
ments.

By assuming the interest rate process is Gaussian, the descriptive statistics
observed are shown in figure 4.6 below:

Figure 4.6: Descriptive statistics for the 3-state HMM model

The graphical results of state changes for the 3-state HMM model are shown
in figure 4.7 below:
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Figure 4.7: Evolution of the 3-state HMM model applied to the 91-day Trea-
sury bill rate from September 1994 to July 2014

4.2.3 4-regime model
The HMM fitting procedure for a 4-state model converges at 34 iterations
with a LogLikelihood of 597.2597 and 23 degrees of freedom. Information
criteria are obtained as -1148.519 for the AIC and -1068.561 for the BIC.

The 4-state model, starts with the assumption that the interest rate process
starts in state 3. Based on the HMM fitting, the transition probability ma-
trix in figure 4.8 below is obtained:

Figure 4.8: Transition probability matrix for the 4-state HMM model

As with the 3-state HMM model, the 4-state model also shows high same-
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state transition probability but with increased probability of transitioning to
other states. State 3 for example has the probability of remaining in state 3
at 94.7 percent with transition to state 2 at 3.6 percent and the probability
of transition to state 4 at 1.7 percent. As with the 3-state model, we also
observe that there is no transition between states that are not immediately
adjacent. For example, at no point does the interest rate move from state 3
to state 1.

By assuming the interest rate process is Gaussian, the descriptive statistics
observed are shown in figure 4.6 below:

Figure 4.9: Descriptive statistics for the 4-state HMM model

The graphical results of state changes for the 4-state HMM model are shown
in figure 4.10 below:
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Figure 4.10: Evolution of the 4-state HMM model applied to the 91-day
Treasury bill rate from September 1994 to July 2014
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Chapter 5

Findings and conclusions

This section considers two key focus areas; 1)The results of HMM filtering
to determine regimes, and 2) Calibration results for the Vasicek model.

5.1 Results of regime analysis
From the HMM results, different models are observed to have distinct repre-
sentations for the interest rate process. We observe the 2-state model having
an AIC of -877.0902 while the AIC for the 3-state model is -974.5105. This
suggests better fit for the 3-state model compared to the 2-state model. Sim-
ilarly, the AIC for the 4-state model is -1148.519 suggesting an improved fit
compared to the 3-state model. This supports the hypothesis that the use of
regime-switching models improves the fit of the model.

The results of the HMM regime breakdown are shown in figure 5.1 below:
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Figure 5.1: Comparison of state changes for the 2-state, 3-state and 4-
state regime switching models applied to the 91-day Treasury bill rate from
September 1994 to July 2014

From the above, it can be noted that:

• The two-state HMM model allows for a high average interest rate
regime and a low average interest rate regime without additional dif-
ferentiation. The low interest rate regime covers the larger proportion
(72 percent) of the total sample period.

• The three-state HMM model provides for a high average interest rate
regime and a low average interest rate regime with an additional transi-
tion regime that provides the bridge between the high and low average
interest rate regimes.

• The four-state HMM model allows for a very-high interest rate state,
a very low interest rate state, and two intermediate states representing
both high and low interest rate levels.
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5.2 Vasicek model parameter calibration
In calibrating the Vasicek model, the long-term mean (µ), the reversion rate
(α), and the volatility (σ) are estimated. Maximum Likelihood estimation is
used to determine the parameters per the equation:

dr(t) = κ[µ− r(t)]dt+ σdW (t), r(0) = r0 (5.1)
where r0, κ, and σ are positive constants.

5.2.1 Single-regime Vasicek model
For the single-regime Vasicek model, the long-term mean is obtained as
9.7773 percent. The rate of mean reversion (κ) is 2.1823 percent while the
volatility is 1.3464 percent. The results are indicated in figure 5.2 below:

Table 5.1: Parameter estimates for the single-state Vasicek model for the
91-day Treasury bill rates for the period September 1994 to July 2014

Single-state model Parameter estimates
The Long-term mean (µ) 9.773%
The mean-reversion rate (κ) 2.1823%
Instantaneous volatility (σ) 1.3464%
Asymptotic variance 0.4154%
Half-life (t 1

2
) 13.79

Total (n) 239

The table shows a fairly high long term mean rate for the entire period under
study. However, the observed rate is higher than that observed in the second
half of the dataset, indicating that the parameter estimates do not show the
changing dynamics of the interest rate process.

Given the observed mean-reversion rate (κ) of 2.1823 percent, we calculate
the half-life of the mean-reversion process defined as t 1

2
= log2

κ
. For the

single-state model, our estimate of the half life, t 1
2

is 13.79.
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5.2.2 Multiple-regime Vasicek model
The Vasicek model parameters in different regimes are estimated based on
results from the HMM filtering process. The results presented below show
the different parameter estimates based on calibration of the Vasicek model
under the different regimes.

2-state model

The 2-state Vasicek model breaks the interest rate process into two states
with distinct parameter estimates. State 1 is observed to have a low long-
term mean and low volatility compared to State 2. From the tables below,
we see the breakdown of the interest rate process into different regimes based
on the long-term mean.

Table 5.2: Parameter estimates for the 2-state Vasicek model for the 91-day
Treasury bill rates from September 1994 to July 2014

2-state model State 1 State 2
The Long-term mean (µ) 6.8923% 21.4387%
The mean-reversion rate (κ) 11.0408% 15.7224%
Instantaneous volatility (σ) 1.0716% 1.7016%
Asymptotic variance 0.0520% 0.0921%
Half-life (t 1

2
) 2.73 1.91

Total (n) 173 66

The table shows the parameter estimates for the 2-state model which breaks
out the interest rate series into a high interest rate and a low-interest rate
series. There is only marginal differentiation in the instantaneous volatility
but with a noticeable increase in the mean-reversion parameters for the two
states. These results show higher stability of the different states with clear
separation between the high and low long-term mean rates.

As with the single-state model, we calculate the half-life of the different
states. We observe the half-life as 2.73 for state 1 and 1.91 for state 2. This
results shows that the 2-state model takes a shorter time to be pulled back
to the mean compared to the single-state model with a half life of 13.79.
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3-state model

Table 5.3: Parameter estimates for the 3-state Vasicek model for the 91-day
Treasury bill rates from September 1994 to July 2014

3-state model State 1 State 2 State 3
The Long-term mean (µ) 6.3750% 13.1614% 23.4144%
The mean-reversion rate (κ) 6.8761% 17.1562% 25.6329%
Instantaneous volatility (σ) 0.8828% 1.7125% 1.6224%
Asymptotic variance 0.0567% 0.0855% 0.0513%
Half-life (t 1

2
) 4.38 1.75 1.17

Total (n) 136 64 39

The parameter estimates under the 3-state model show the breakdown into
three states: a high interest rate state, a low-interest rate state, and a tran-
sitional state with the long-term mean parameter estimates reflecting this
result. The instantaneous volatility estimates follow this pattern with state
1 having a low volatility, state 2 having a higher volatility but with the high-
est volatility observed for the transitional state, state 2.

Given the estimated parameters, we compute the half-life for the different
states and obtain: 4.38 for state 1, 1.75 for state 2 and 1.17 for state 3.
All states in the 3-state model show a much lower half-life compared to the
single-regime model. Similarly, states 2 and 3 show lower half-lives compared
to the 2-state model with state 1 having a slightly higher reversion rate.
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4-state model

Table 5.4: Parameter estimates for the 4-state Vasicek model for the 91-day
Treasury bill rates from September 1994 to July 2014
4-state model State 1 State 2 State 3 State 4
The Long-term mean (µ) 2.0404% 7.8077% 13.1614% 23.4144%
The mean-reversion rate (α) 49.4913% 32.7593% 17.1562% 25.6329%
Instantaneous volatility (σ) 0.5755% 0.8131% 1.7125% 1.6224%
Asymptotic variance 0.0033% 0.0101% 0.0855% 0.0513%
Half-life (t 1

2
) 0.61 0.92 1.75 1.17

Total (n) 29 107 64 39

The table showing calibration results for the 4-state model shows 2 high-
interest rate, and 2 low-interest rate regimes. This pattern is also observed
for the instantaneous volatility.

The 4-state model shows the lowest values for half life across all states. The
half lives are obtained as 0.61 for state 1, 0.92 for state 2, 1.75 for state 3
and 1.17 for state 4. From the analysis, it is observed that the 4-state model
breaks down state 1 in the 3-state model into two separate states both having
very low half-lives.

5.2.3 Evaluation of alternative models
The HMM filtering approach provides a clear separation of states relying sig-
nificantly on the level of the interest rate. The level of the long-term mean
is a significant determinant of the observed state. This is the case for the
2-state, 3-state and 4-state models.

By contrast, the volatility, and by extension the asymptotic variance does not
follow a similar pattern. There is no direct observed relationship between the
level of the interest rate process and the observed volatility. This suggests
that the risk and expected compensation does not depend on the level of the
interest rate but rather the inherent variability of the interest rate while at
a particular interest rate level.
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The mean reversion rate shows the most significant variation with change for
different states and across the different HMM models. The mean reversion
rate is 2.1823 percent for the single state model but the weighted average
mean reversion rate jumps to 12.3336 percent for the 2-state model. This
increases to 12.6897 percent for the 3-state model and jumps to 29.4484
percent for the 4-state model. This observation indicates that the addition
of states increases the mean-reversion parameter for the individual states.
This suggests that the addition of states improve stability of the long-term
mean in each state. This makes intuitive sense as a higher mean reversion
rate implies faster reversion to the long-term mean level. This is supported
by calculations of the half-lives for the different states which show a steady
decrease with the introduction of additional states.

5.3 Conclusion
In this paper, the Vasicek model has been calibrated under a single regime
and under multiple regimes of the interest rate process. It is observed that
introduction of regimes enables more flexible specification of the interest rate
process. Three key observations are made:

• The level of the long-term mean is a significant determinant of the state
probability.

• The volatility and asymptotic variance do not depend on the level of
the long-term mean, but on the inherent variability of the process in a
particular state.

• The introduction of additional state probabilities increases the mean
reversion parameter for majority of the states. This suggests increased
stability in model parameters given the introduction of regimes.

It is observed that a regime-switching model of the interest rate provides a
good framework for modeling the interest rate and as such should be con-
sidered when evaluating interest rate dynamics for the pricing of derivative
instruments. The parameter estimates provide a good starting point for de-
velopment of financial instruments whose underlying is or depends on the
interest rate process.
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Future areas of research include evaluating the comparative performance of
the Vasicek interest rate model against other interest rate models. In addi-
tion, there would be significant value in evaluating the evolution of interest
rate dynamics and volatility when constraints are applied to the interest rate
process e.g., with politically-motivated interest rate controls. Additionally,
this work focused on the calibration with scope for future work to evaluate
the forecasting results.

Existing models used by financial institutions in Kenya focus on economic
factors e.g., economic growth, inflation etc, which present an opportunity to
evaluate the performance of diffusion models when compared to models based
on underlying economic phenomena. This analysis can also be extended to
evaluate the impact of regime-switches on credit risk measures. These are
areas that would provide additional context on the most appropriate models
for empirical application in a developing market like Kenya.
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