Comparing **Hyperspectral** and Multispectral satellite imaging for within-field maize yield prediction using **Support Vector** Machine

Maize Crop Yield Prediction

Through the years, has been;

- 1. Casual/Mental model
- 2. Scientific model
- a) Soil conditions (too manual)
- b) Weather conditions (too many variables)
- c) Appearance models built for V. Healthy, Healthy, Average, Poor, V Poor.

Crop Data Collection

- 1. Localized (Mechanistic and chlorophyll Analysis)
- 2. Remote-sensing
- Mainly satellite and aircraft platforms. Has used visible cameras etc. Now;
- Multispectral 20 bands, 100nm width bands.
- Hyperspectral 200 bands, 10nm width bands.

Illustrated in next slide;

Platforms;

a) Satellite – quick, cheap, wide coverage. But poor spatial resolution for hyperspectral imaging (30m). Regional.

b) Airborne – Good spatial resolution (2m), within-field. But too expensive for the African researcher

Problem Statement

 In Kenya/Africa, majority of maize is grown in small, proprietal plots of approx. 2 acres

 Due to differences in quality of farm inputing and general farm management across proprietal plots, yield is likely to vary across the plots.

Problem Statement cont'd

 Analysis of crop health is best done with the plots as the basic units, then aggregated over locations, districts, provinces and nationally.

This calls for within-field imaging.

 Has been only possible with airborne imaging, which is too expensive.

Hypothesis

- The study explores the use of satellite for withinfield (120m * 120m plots) imaging.
- The study hypotheses that using multispectral and hyper spectral technologies for data collection can generate enough pixels per plot for analysis.
- 6 pixels per image is enough for analysis
- 1. Hyperspectral @ 30m resolution, 16 pixels
- 2. Multispectral @ 2m resolution, 3600 pixels

Methodology

- Five 120 m * 120 m plots; V Healthy, Healthy,
 Average, Unhealthy, V Unhealthy.
- Replicated 4 times, the other three for evaluation of accuracy
- Tend till harvest and record bags/acre for each plot
- Build model by mapping spectral values of each plot to the yield

Analysis

- To be done using SVM (Support Vector Machine), according to empirical research findings, the most powerful machine learning (Artificial Intelligence) algorithm.
- Viewing input data as two sets of vectors in an n-dimensional space, an SVM will construct a separating hyperplane in that space, one which maximizes the margin between the two data sets.

 H3 (green) doesn't separate the 2 classes. H1 (blue) does, with a small margin and H2 (red) with the maximum margin.

PRESENTER'S DETAILS

Ojenge Winston

Tel: 0733522259

E-mail: tojenge@yahoo.com