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Abstract

Background: World Health Organization (WHO) guidelines recommend early identifica-

tion of patients who have emergency features for early medical intervention with the aim of

reducing child mortality and morbidity. Prognostic models have been developed to be used

in clinical setups, but their performance in external validations has been dismal. These poor

performances have been attributed to suboptimal statistical methods used for derivation of

these scores.

Methods: The Bayesian finite mixture model was used to succinctly identify subpopulations

in a population of 47,596 patients from different geographical regions. Mixed models were

used to derive a final prognostic model taking into account subgroups of the population.

Clinically relevant yet routinely available prognostic factors were used in model develop-

ment.

Results: Amongst the 23 risk factors used, the AVPU scale which measures unconscious-

ness was the strongest predictor of mortality with odds of (AOR=2.94, 95% CI= 2.57 - 3.36).

Oedema (AOR= 2.66, 95% CI= 2.18 - 3.24), pallor (AOR=2.09, 95% CI= 1.86 - 2.36) and the

presence of >= 3 severe comorbidities (AOR=2.19, 95% CI= 1.73 - 2.74) were also associated

with an increased risk of death.

Conclusion: Given that patient are not alike, a statistical methodology that clusters patients

into homogeneous subpopulations should be used to account for the inherent variability in

the medical patients. Computational methodology such as mixture models should be used

to identify inherent subpopulations that underlie the population of medical patients under

study.

Limitation: The use of diagnostic episodes as one of predictors in the model was based on

the clinician’s impression (not a laboratory test) thus the possibility of false positives could

not be ruled out.
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Chapter 1

Introduction

1.1 Background of the study

Childhood mortality has dropped by a good margin from 11 million in 1990 to 6 million

in 2013 since the implementation of Millennium Development Goal 4 as shown in (Rajarat-

nam et al., 2010). Despite the success, mortality still remains a challenge in Low Income

Countries (LIC henceforth) with statistics showing that nearly half of under-five deaths in

2012 occurred in sub-Saharan Africa as observed by (Alkema et al., 2016). This challenge

seems persistent despite having in place other noble efforts of reducing mortality such as

Integrated Management of Childhood Illness (IMCI) (WHO, 2005).

Paediatric scoring systems have been developed in well-resourced countries and have

been used to describe the severity of illness in paediatric wards. Examples include the Pedi-

atric Early Warning System score (PEWS) derived by (Duncan et al., 2006) which has helped

not only in identifying deteriorating patients in time, but also it has been used in assessing

case-mix differences in different clinical trials. Ideally, prognostic or even diagnostic scores

are not meant to substitute a clinician’s decision in the health facilities, but rather they are

meant to augment their judgment and hence used as job-aids in an emergency setup. This

is particularly important considering that patient-to-clinicians ratio in LIC has been shown

to be high in the paper by (Wakaba et al., 2014).

In LIC, recent studies such as (Ayieko et al., 2015) have shown that hospital mortality

often occurs within the first few hours of admission. Therefore, predicting pediatrics’ out-

come is increasingly becoming important not only in prognosis, but also in planning for

2
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occupancy, staffing and assessment of interventions in the health system research. This has

led to an avalanche of studies aimed at developing clinical prognostic models in order to

rapidly identify patients who are at a higher risk for the purposes of prioritization in admin-

istering treatment in time.

Prediction of paediatrics’s outcome has been of interest as evidenced by a vast majority

of published scores. However, most of the these published scores such as (Pollack et al.,

1988; Shann et al., 1997; Egdell et al., 2008; George et al., 2015; Helbok et al., 2009) are highly

specific to a particular pathogen. Common examples of such pathogens include meningo-

coccal disease and malaria which requires a confirmatory laboratory test. This requirement

of laboratory screening makes their utility limited especially in an emergency setup. Fur-

thermore, laboratory equipments in most of LIC countries are limited as shown by (Ayieko

et al., 2015). Other published scoring systems are faced with numerous challenges such as

paltry sample size and a limited events-per-variable which renders such models to overfit

and hence predict poorly as demonstrated by (Ogundimu et al., 2016; Steyerberg and Ver-

gouwe, 2014).

Typically, the usefulness of a clinical predictive model is measured by its ability to make

correct predictions about future or yet unseen observations. As a result, before any devel-

oped model is put into use, it is a conventional requirement as shown by (Bleeker et al.,

2003) that an independent external validation to be undertaken. The external validation is

often treated preferentially to internal validation of a prediction model. This is because it ad-

dresses generalizability of a derived model rather than reproducibility of the same model as

asserted by (Steyerberg and Vergouwe, 2014). Essentially, a fully external validation study

entails independent researcher(s) studying patients of different geographical location from

the one used during model derivation. Performance of the model is assessed by how well

it discriminates patients with outcome from those without. A good number of developed

paediatric scores have not been generalized because of their poor performance in external

validations. Of note, however, almost all developed prognostic models have blatantly failed

to account for the uncertainty in model selection as recommended by (Hoeting et al., 1999).

Furthermore, they have failed to recognize that there exists sub-populations with different

mortality patterns. Inability to count for such uncertainty leads to a model performing dis-

mally during external validation and thus affecting model transportability.

Page 3



Chapter 1

There is therefore need for a practical prognostic model which is based on hospital rou-

tine measures collected at the bedside that has intuitive range and that does not need a

specific disease or infection to be identified. Such a model would be useful in the real-time

discrimination of patients with high risk of deterioration from those with low risk while

taking subpopulations into account.

Page 4
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1.2 Problem definition

Clinical prognostic models often combine multiple prognostic factors to give an insight into

the relative effects of risk factors in the outcome of interest. Although publications that

present such models are becoming more frequent in the literature, the methodology em-

ployed is often suboptimal. Consequently, poor performance of the derived models is often

observed during their external validations. A model becomes useful if it is able to be gener-

alized and used in the wider population from which the sample is drawn.

In assessing the association between risk factors and patient outcomes, a logistic regres-

sion methodology is often used as a standard method. Under this methodology, a stepwise

regression technique is mostly used to choose a subset of relevant variables despite being

discouraged by (Wynants et al., 2016) and (Ogundimu et al., 2016). Inferences about the

predictors are then made based on the chosen model constructed of only those variables

retained in that model with the assumption of being a unimodal population. However,

in practice multi-modal populations are more common to find than unimodal ones, par-

ticularly in complex phenomena such as pediatric mortality. Therefore, stepwise method

subsequently ignores subpopulations that are inherent in the populations and whose true

data-generating mechanism might be very different from one another.

This limitation may be addressed by adopting a finite mixture model approach, which

is able to utilize researcher’s prior knowledge to come up with finite subpopulations whose

statistical properties are unique to each other. This approach has been shown to account for

uncertainty in the derived model.

Berkley et al. (2003) observed that paediatrics often experience mortality in different

ways; either immediate mortality (on admission), early mortality (few hours after admis-

sion < 48 hours) or late mortality (≥ 48 hours after admission). However, a true hospital

length of stay (LOS) in terms of hours is largely unknown. Hence a true data generating

distribution of pediatric mortality becomes less intuitive because of its multi-modal nature.

These subpopulations has to be identified and accounted for so as to make a predictive

model useful in out-of sample data.

This study, therefore applied mixture model theory, both as a proof of concept and as

an operational model to identify finite subpopulations so as to build an all encompassing
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prognostic model. The outcome of interest for this study is all-cause in-hospital mortality.

The principle motivation of using mixture models is that the event of interest(mortality)

being observed cannot be fully modeled by a single, simple model nor characterized simply

by distribution, but rather by multiple of such distributions or models, with some random

selection mechanism at play.

Page 6
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1.3 Objectives

This study had the following main objective which is further broken down into specific

objectives:

1.3.1 Main objective

To develop a robust Bayesian-based prognostic model of hospital outcomes for paediatrics

admitted in Kenyan county hospitals.

1.3.2 Specific objectives

1. To identify research gaps and statistical limitations that are in the recently published

prognostic models.

2. To explore the appropriate statistical methodology that can address the limitation iden-

tified in 1 above.

3. To use readily available routine data to develop a generic predictive model using

Bayesian paradigm under the methodology identified in 2 above.

Page 7
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Literature Review

2.1 Overview

Clinical prediction models are fundamental in medicine, they have been used to inform

treatment as well as providing information on diagnostic episodes that are possibly present

in a patient given his/her presenting characteristics. Prognostic models make a joint use of

multiple clinical signs of a given disease and other risk prognostic factors to systematically

calculate prognostic indices (probability estimates) that are used to discriminate patients

of high risk from those with low risk as shown in the paper by (Mallett et al., 2010). These

probabilistic discrimination is useful since it augments the clinical intuition of clinicians who

have been shown by (Wakaba et al., 2014) to be in short supply especially in low-income

countries. Of note, however, just a handful of models ends up being used in clinical practice

out of many that are published. But this trend is not without a reason; (Mallett et al., 2010)

and (Mikolajczyk et al., 2008) observed that most of the published prognostic models have

been derived using poor statistical methods that adversely affect their performance during

external validations.

2.2 Heterogeneity in medicine

Researchers using medical data more often than not present results for ’average’ patients

while ignoring potential heterogeneity of patients. This is because most of the standard sta-

tistical models, such as linear regression, estimate the population average effect, which is the

8
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mean response of all individuals under study. But the population average effect might be a

mixture of some effect, little effect and/or no effect. Thus, using customary statistical meth-

ods considerably fails to appreciate that patients are not alike! Consequently, the resultant

effects of covariates on the quantity of interest tend to mislead! For instance (Schlattmann,

2009) noted that patients react differently to treatment regimes. Observable factors such

as age, gender, etc. could be attributable to such differences. Owing to such heterogeneous

populations, individualization of medical therapies has become necessary. However, the un-

derlying mechanism that triggers patient variability remain unknown. Most of the factors

that are thought to be attributable to patient heterogeneity are largely latent (unobserved)

variables in medical research. For example, information on genetic polymorphisms of pa-

tients remain unknown yet that information is crucial in pharmacokinetic studies. Faced

with unobserved patient heterogeneity, a statistical methodology that handles variability

between individuals due to unobserved covariates has to be used particularly in clinical

predictive models so as to improve performance.

2.3 Methodological flaws in prognosis

In clinical research, multivariate clinical information is integrated to optimally predict pa-

tient status or even disease progression. However, overwhelming evidence arising from a

series of systematic reviews such as (Mallett et al., 2010; Collins et al., 2011, 2014) has pointed

out numerous challenges that make prognostic models perform poorly. They include sam-

ple size, missing data and most importantly inappropriate methodological choice in their

statistical analyses. Models derived from such shortcomings of methodology give overop-

timistic performance during derivation. Therefore, it is not surprising that most of these

suboptimal prognostic models undoubtedly never get to be used as quantified by (Collins

et al., 2016). This is because they can never pass a rigorous test of external validation. Given

that patient are not alike as pointed out in section 2.2, a statistical methodology that clus-

ters patients into homogeneous subpopulations should therefore be used to account for the

inherent variability in the clinical studies.
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2.4 Machine Learning(ML) methods

Oermann et al. (2016) defined machine learning as a branch of Artificial Intelligence, which

is an interdisciplinary field combining computer science and mathematical statistics to de-

velop models with maximal predictive accuracy. Kourou et al. (2015) further observed that

ML techniques have the ability to discover, identify patterns and relationships present in

complex datasets. Oermann et al. (2016) applied ML techniques to predict individual pa-

tient outcomes after radiosurgery and reported that the approach provided the best possi-

ble predictions in relation to the methods they were compared with. Based on (Cruz and

Wishart, 2006), the accuracy of cancer prediction outcome has significantly improved by

15%–20% with the application of ML techniques in the prognostic models. Clustering is a

common unsupervised task of ML with the aim of determining intrinsic groupings. That is,

observations with similar characteristics but dissimilar from others are grouped together to

constitute subpopulations. Most of the clustering algorithms are distance-based; they use the

geometric distance matrix as a criterion of grouping observations. The literature has shown

that probability-based clustering is preferred to a distance-based. In particular, (Aitkin et al.,

1981) pointed out that ”when clustering samples from a population, no cluster method is a priori

believable without a statistical model”. The mixture model is an example of such model-based

ML methods used in clustering as we have shown below.

2.4.1 Mixture models

In statistical pattern recognition, the finite mixture model is a probabilistic clustering algo-

rithm used to expose some natural groupings that may underlie the data (heterogeneous

population). Model-based approach to clustering is supported by (Aitkin et al., 1981), who

remarked in their paper that ”clustering methods based on such mixture models allow estimation

and hypothesis testing within the framework of standard statistical theory.”

The main assumption of the mixture model is that each data point yi is a realization of the

mixture density where observations in the model corresponds to clusters/subpopulations.

Probabilistic (soft clustering) of the data into K clusters can be obtained in terms of the fitted

posterior probabilities of component membership for the data as shown by (Schlattmann,

2009). A substantive hard clustering can be subsequently obtained by assigning each obser-
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vation to the component to which it has the highest fitted posterior probability of belonging

as demonstrated by (McLachlan and Peel, 1998).

2.4.2 Applications of mixture models in prognosis

• Kusmakar et al. (2016) used Gaussian Mixture Model (GMM) for the identification of

psychogenic non-epileptic seizures. They reported that GMM algorithm accurately

modeled the non-epileptic and epileptic movements, hence enhancing the overall pre-

dictive accuracy of the their model to 91% of the new data.

• Le and Bukkapatnam (2016) utilized a nonparametric statistical Dirichlet-Process to

build a prognostic model in pulse rate dynamics with the aim of predicting real time

onsets of episode before the clinical symptoms appear. They reported that the tech-

nique enhanced effective prediction.

• Lu et al. (2016) used finite mixture model to accurately segment angiography blood

vessels which has played an important role in an interventional treatment of vascular

diseases.

• The mixture model has been used in the identification of high-risk groups in the pro-

cess of disease mapping. Schlattmann et al. (1996) used mixture model approach to

identify spatial heterogeneity in tuberculosis risk and mapped it within an empirical

Bayes framework.

• Gene expression profiling is expected to unveil the underlying molecular features. A

parametric clustering method using the Gaussian mixture model and the Bayes infer-

ence was used by (Muro et al., 2003) and it revealed three groups of expressed genes

in their study.

• Neuroblastoma patients, most of the time, experiences heterogeneous survival out-

comes despite aggressive treatment. Aware of these variabilities, (Hunsberger et al.,

2009) used the finite mixture model to analyze a large cohort of these patients with the

aim of identifying patients with the shared types of neuroblastoma so that individu-

alized interventional therapies could be enhanced. The robustness of these methods

were tested on simulated data and misclassification rates was found to be quite low.

Page 11
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Research Methodology

3.1 Study setting

This was a cross-sectional prospective study on patients admitted to paediatric wards across

14 county hospitals in Kenya as shown in Figure 3.1. Selection of these hospitals were pur-

poseful to reflect high and low malaria endemicity both in large rural environments and

urban settings with the condition of a given hospital admitting at least 1,000 children per

year. In general, these hospitals are part of the Clinical Information Network (CIN) which

is a collaboration between researchers from the Kenya Medical Research Institute (KEMRI),

Wellcome Trust Research Programme (WTRP), the Kenya Ministry of Health (MOH), the

Kenya Paediatric Association (KPA) and the University of Nairobi (UON). The main aim

of the CIN was to use de-identified patient level routine data to improve hospital care. A

detailed description of CIN study has been given elsewhere by (Ayieko et al., 2015). All re-

search related activities undertaken by CIN has received approval from the national KEMRI

scientific and ethical review committees.

3.1.1 Data management

Data were abstracted from the patient file by a trained data clerk on the daily basis following

the discharge or death of a patient. The abstracted data were then fed into a customized data

capture tool designed with the non-proprietary Research Electronic Data Capture (REDCap)

platform which has an inbuilt range and validation checks as documented by Harris et al.

(2009). Before the data were synchronized to a central database, the data clerk checked and
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Figure 3.1: Location of hospitals under study and their population density
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ensured completeness as well as consistency with locally executed cleaning scripts which

were written in R language. If the error or any inconsistencies were detected in any record, a

data clerk looked for that specific file and verified. Another round of data checks were done

at the central server and in the event of any inconsistencies, data clerks whose record(s) were

problematic were rang to rectify the anomaly. This loops of validation checks guaranteed a

high quality data.

3.1.2 Inclusion criteria

All admissions aged > 1 month hospitalized in the paeditric wards of all 14 CIN partic-

ipating hospitals from September 2013 through December 2016 were deemed eligible for

inclusion to the study. Patients with surgical conditions or burns were excluded because

they require different clinical management. The flow of data from the server is as shown in

figure 3.2 below.
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Exclusions 

1. Patients admitted when

 clinicians are on strike,

2. Patients discharged when

 data clerk are on leave,

3. Trauma cases, 

4. Surgical burns cases,

5. Accommodation cases,

6. Missing Outcome

(alive/dead)

Inclusions 

Age 

(2 months – 12 years)

Paediatric Admissions to CIN 14 Hospitals 

(September 2013 to Dec 2016)

(N=95,993)

Eligible population 

(n=47, 596)

 

Figure 3.2: Inclusion criteria
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3.2 Bayesian inference

Bayesian inference is a powerful framework that utilizes Bayes theorem to make inference.

This framework is efficient because all relevant sources of uncertainty and other unknown

quantities are expressed as a random variable.

In this paradigm, current information or knowledge about the parameters of the model

is expressed mathematically by placing a probability distribution on the parameters, termed

as ”prior distribution”, commonly expressed as p(θ).

With the availability of the new data y, the information contained in y pertaining the

model parameters is then expressed as the ”likelihood”. By definition, the likelihood is directly

proportional to the distribution of the observed data given the parameters of the model,

expressed as p(y | θ).

Combination of the likelihood and the prior distribution results to a probability distribution

which is updated. Commonly referred to as ”posterior distribution”. This is where all infer-

ences about the model are based on. Bayes’ Theorem, an elementary identity in probability

theory, states how the updating of posterior distribution is done mathematically as shown

by (Gelman et al., 2014):

p(θ | y) =
p(θ)× p(y | θ)∫

Θ p(θ)× p(y | θ) dθ
.

Which is equivalent to,

p(θ|y) ∝ p(θ)× p(y|θ).

3.2.1 Prior specification p(θ)

Priors rules out unreasonable parameter values. As opposed to widely used flat priors, this

study used weakly informative priors to help control inference computationally and statis-

tically. Computationally, (Gelman et al., 2015) showed that a weakly informative prior in-

creases the curvature around the volume where the solution is expected to lie, which in turn

guides MCMC sampler by not allowing them to stray too far from the location of a surface.

Statistically, weakly informative priors are not very sensitive, in the sense that reasonable

changes in the prior do not produce noticeable changes in the posterior.

All models used in this study had different prior specifications based on the complexity
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of a given model. Specification of each of the model is as follows;

1. Prior Specification for finite mixture model

Finite Mixture model parameters has three parameters (θ, µ, σ), where θ is the mixture

probabilities, µ is the mixture/components means and σ is the standard deviation of

mixtures as defined by (Gelman et al., 2014).

The weakly informative priors of each is as defined below:

• Dirichlet prior on the mixture proportions p(θ) ∼ Dirichlet(α1, . . . , αH), where

the sum of αh is a measure of the strength of the prior distribution.

The Dirichlet distribution enforces uniqueness of the components in the mixture

model as proven by (Kucukelbir et al., 2015).

• Gaussian prior on the component means

p(µ) =
H

∏
h=1

N(µh; 0, σµ).

• Lognormal prior on the standard deviations of components

p(σ) =
H

∏
h=1

logNormal(σh; 0, σ).

2. Prior Specification for mixed effects model.

Mixed model parameters has four parameters (β, µ, σ, α),

where β is the vector of model predictors, µ is the random effect of the mixed model,

σ is the standard deviation of random effect and α is the intercept.

Weakly informative priors of each is as defined below:

• Half Cauchy priors on the model coefficients p(β) ∼ cauchy(0, 2.5).

• Cauchy priors on the model intercept p(α) ∼ cauchy(0, 10).

• Gaussian prior on the random effect of the model

p(µ) =
K

∏
i=1

N(µi; 0, σµ),
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where K is the number of random effects used in the model.

3.2.2 Sensitivity analysis on priors

Sensitivity analysis entails checks on model settings to assess the robustness of the choice

of priors. Changes in priors, perhaps even slight ones often results in changes in posterior

inferences especially when priors are not robust. We compared our models with plausible

but different priors, different choices did not produce gross changes of inference from the

posterior. We were therefore confident in the final selection of the priors.

3.2.3 Label switching

Definition of label-switching

In order to make inferences with a mixture model we had to learn each of the component

weights θk and the component parameter λk. If the posterior cannot discriminate between

the components, then it cannot discriminate between the component parameters. Put dif-

ferently, individual component distribution is identical with other components πk(y | λk) =

π(y | λk). This phenomena of permuting labels of components/subpopulations in different

chains of MCMC is termed as Label Switching. It arises if the parameters of the mixture com-

ponents have exchangeable priors π(τ(α)) = π(α) then it has been shown by (Gelman et al.,

2014) that the posterior will inherit the permutation invariance of the mixture likelihood as

follows;

π(σ(α), σ(λ) | y) ∝ π(σ(α))π(σ(λ))
K

∑
k=1

λσ(k) πσ(k)(y | ασ(k)),

∝ π(σ(α)), π(σ(λ))
K

∑
k′=1

λk′ πk′(y | αk′),

∝ π(α)π(λ)
K

∑
k′=1

λk′ πk′(y | αk′),

= π(α, λ | y).

Hence it becomes ambiguous as to which parameters λ are associated with each component

in the mixture.
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3.2.4 Label-switching solutions

Ordering of constraints

To avoid the phenomena of label-switching in the mixture model we made exchangeable

prior non-exchangeable by imposing an ordering on parameter space. This technique has

been shown by (Gelman et al., 2014) to be an efficient computational trick which does not

affect the resulting inferences. The solution is defined as follows: given the exchangeable

priors π(α) non-exchangeable prior can be enforced by ordering as shown in equation 3.1

π′(α) =

 π(α), α1 ≤ . . . ≤ αK

0, else
(3.1)

Further details how ordering of parameters works in a mixture model is demonstrated in

section 3.2.5

3.2.5 Ordering in a Two-component case

The following computations shows how ordering works in a two-mixture components as it

was the case in this study. In the two-component case there are two parameters α1 and α2

and mixture weights θ1 and θ2 = 1− θ1 The desired expectation can be decomposed over

two pyramids that are present in a two-dimensional parameter space as follows;

Eπ[ f ] =
∫

dθ1dθ2dα1dα2 · f (α1, α2) · π(α1, α2, θ1, θ2 | y)

∝
∫

dθ1dθ2dα1dα2 · f (α1, α2) · π(α1, α2)π(θ1, θ2) (θ1π(y | α1) + θ2π(y | α2))

∝
∫

α1<α2

dθ1dθ2dα1dα2 · f (α1, α2) · π(α1, α2)π(θ1, θ2) (θ1π(y | α1) + θ2π(y | α2))

+
∫

α2<α1

dθ1dθ2dα1dα2 · f (α1, α2) · π(α1, α2)π(θ1, θ2) (θ1π(y | α1) + θ2π(y | α2)).

If we permute parameters as

(α1, α2)→ (β2, β1)

and

(θ1, θ2)→ (λ2, λ1),
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then the second pyramid will be rotated into first as follows;

Eπ[ f ] ∝
∫

α1<α2

dθ1dθ2dα1dα2 · f (α1, α2) · π(α1, α2)π(θ1, θ2) (θ1π(y | α1) + θ2π(y | α2))

+
∫

β1<β2

dλ2dλ1dβ2dβ1 · f (β2, β1) · π(β2, β1)π(λ2, λ1) (λ2π(y | β2) + λ1π(y | β1))

∝
∫

α1<α2

dθ1dθ2dα1dα2 · f (α1, α2) · π(α1, α2)π(θ1, θ2) (θ1π(y | α1) + θ2π(y | α2))

+
∫

β1<β2

dλ1dλ2dβ1dβ2 · f (β2, β1) · π(β2, β1)π(λ2, λ1) (λ1π(y | β1) + λ2π(y | β2)).

Applying permutation-invariance of f and the exchangeability of the priors the second term

will be equivalent to the first term as follows:

Eπ[ f ] ∝
∫

α1<α2

dθ1dθ2dα1dα2 · f (α1, α2) · π(α1, α2)π(θ1, θ2) (θ1π(y | α1) + θ2π(y | α2))

+
∫

β1<β2

dλ1dλ2dβ1dβ2 · f (β1, β2) · π(β1, β2)π(λ1, λ2) (λ1π(y | β1) + λ2π(y | β2))

∝ 2
∫

α1<α2

dθ1dθ2dα1dα2 · f (α1, α2) · π(α1, α2)π(θ1, θ2) (θ1π(y | α1) + θ2π(y | α2))

∝
∫

α1<α2

dθ1dθ2dα1dα2 · f (α1, α2) · 2π(α1, α2)π(θ1, θ2) 2(θ1π(y | α1) + θ2π(y | α2))

=
∫

α1<α2

dθ1dθ2dα1dα2 · f (α1, α2) · π′(α1, α2, θ1, θ2 | y).

Thus, the first and the second terms can be expressed as;

Eπ[ f ] = Eπ′ [ f ]. (3.2)

Equation 3.1 is a simplified form of equation 3.2. Hence it has been shown that taking ex-

pectation over the pyramid defined by the standard ordering yields the same value as the

expectation taken over the entire parameter space.

3.2.6 Computations

All models in this study were implemented in Stan. This is a flexible probabilistic program-

ming framework originally designed by (Gelman et al., 2015) for sampling-based inference.

We had strong reasons for using Stan and they included:

• Stan uses a No-U-Turn (NUT) sampler which is a variant of Hamiltonian Monte Carlo
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(HMC). This sampler technically overcomes a local random-walk behavior which is a

common problem in Gibbs sampler and Metropolis algorithms as excellently shown in

(Betancourt, 2013). These inefficiencies costs a lot of time zigging and zagging while

traversing through the target distribution. As demonstrated by (Gelman et al., 2014),

such random-walk behaviors are very common when BUGS/JUGS is used to estimate

complicated models such as mixture models.

• Stan is coded in C++ which implies that computational time is relatively short as com-

pared to BUGS/JUGS.

• Stan implements Automatc Differentiation Variational Inference (ADVI) which is es-

sential in the computation of machine learning (mixture models) posteriors which are

otherwise computationally intractable because of their closed form. ADVI as docu-

mented by (Kucukelbir et al., 2015) transforms the joint density of any differentiable

probability model to the real coordinate space.

3.2.7 Implementing Bayesian finite mixture model

Let z ∈ {0, . . . , K} be an assignment that indicates to which data generating process a given

sample are generated from. Suppose each of the y = y1, ..., yn items in the sample belong to

one of H subpopulations. For Mathematical convenience, mixture models are often formu-

lated in terms of latent variables indicator zih. Defined as follows

zih =


1 if ith unit is drawn from hth component

0, otherwise

Latent variable indicator are never observed and their values are never known beforehand.

Let h = 1, ..., H, then the hth component distribution is defined as fh(yi | λh) which depends

on parameter vector λh.

Let θh denote the mixing weight of the population from the component h, such that;

θ = (θ1, . . . , θK), 0 ≤ θk ≤ 1,
H

∑
h=1

θh = 1,
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the joint likelihood over observations and its subpopulation becomes,

π(y, z | α, θ) = π(y | α, z)π(z | λ) = πz(y | αz) θz.

But, in practice assignment of observation to a subpopulation uses discrete parameters

which are difficult to fit accurately because gradient computations are not tractable. As

a result, inference of such parameters can be done via marginalization of the assignments

which yields a likelihood that depends on only continuous parameters which is essentially

a convex combination of the data generating process as follows:

π(y | α, θ) = ∑
z

π(y, z | α, θ)

= ∑
z

πz(y | αz) θz

=
K

∑
k=1

πk(y | αk) θk

=
K

∑
k=1

λk πk(y | αk).

The sampling distribution of y then becomes;

p(yi | λ, θ) = θ1 f (yi | λ1) + θ2 f (yi | λ2) + ... + θH f (yi | λH). (3.3)

To incorporate the latent variable indicator zi = (zi1, ..., ziH) is modeled as multinomial with

parameter θ. Mathematically defined as:

z ∼ Multinormial(θ),

where θ = (θ1, ..., θH)
T is the vector of probability also known as mixing weights. The

generative process of each observation is then defined as shown below

y | z = h ∼ Gaussian(µk, σk), (3.4)

where h is a component(subpopulation) in the mixture model.

Hence the joint distribution of observed y and a latent indicator z on the model parameter

Page 22



Chapter 3

can be expressed as follows:

p(y, z | λ, θ) = p(z | θ)p(y | z, λ) =
n

∏
i=1

H

∏
h=1

(θh f (yi | λh))
zih . (3.5)

3.2.8 Bayesian mixture model posteriors

Bayesian inference over a mixture model requires both mixture likelihood as well as prior

distributions for both the component parameters, λ, and the mixture probabilities, θ. The

posterior distribution for multiple N observations becomes

π(λ, θ | y) ∝ π(λ)π(θ)
N

∑
n=1

H

∑
h=1

θH πH(yn | λH), (3.6)

where H is the number of subpopulations, θ is the vector of mixing weights and λ is the

vector of the model parameters.
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3.3 Analysis

3.3.1 Handling missing data

Before fitting regression models we explored the levels of missingness both in explanatory

and dependent variables. Since the degree of missingness was not ignorable (< 1%), we

conducted multiple imputation under the assumption of Missing At Random (MAR) miss-

ingness mechanism. Using chained equations, we generated 25 dataset with 100 iterations

each. Rubin’s rules were used to pool estimates of the model from each of the dataset im-

puted.

3.3.2 Analysis plan

Determining prognostic factors

Opinion from experts (pediatricians) and literature search informed the list of variables that

were deemed to be of clinical relevance in predicting mortality of paediatrics. They in-

cluded:

• Unconsciouness on AVPU scale

• Central Cyanosis

• Grunting

• Severe pallor

• Acidotic Breathing

• Inability to drink/breasfeed

• History of fever

• History of diarrhoea

• Indrawing

• Pallor

• Stiff Neck
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• Skin Pinch

• Jaundice

• Oedema

• Number of severe comorbidities

• Time(seconds) to capillary refill

• Pulse(Normal or weak)

• Gender

Variables listed above have been shown to be significant factors of mortality by (Gathara

et al., 2017).

Variable selection

Final prognostic model included all of the above variables which were selected a prior based

on the clinical relevance. As a result, no model building process ensued since these variables

were independent predictors of mortality. Statistical procedures (e.g. stepwise selection)

with a strong focus on significance levels to include or exclude a variable have been highly

discouraged by (Wynants et al., 2016) and (Ogundimu et al., 2016) who observed that models

built from variable selection procedures such stepwise in a binary outcome tends to have a

considerable bias in their coefficients especially in small sample sizes.

Determining the number of subpopulations, K

The first (Model 1) logistic mixed effect model with hospital identity as clustering factors

was fitted with all the listed variables as follows:

Let the linear predictor η be the combination of the fixed effects (Prognostic factors listed

above) and random effects (Hospital identity) excluding the residuals. Our main outcome

was mortality(alive/dead) a binary outcome. As a result we used a logistic link function
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g(·).

η = Xβ + Zγ,

g(·) = link function,

g(·) = loge(
p

1–p ),

h(·) = g−1(·) = inverse link function,

where the conditional expectation of y is given by g(E(y)) = η,

X is a N × p matrix of the p predictor variables; β is a p× 1 column vector of the fixed-

effects regression coefficients; z is the N × q design matrix for the q random effects; γ is a

q× 1 vector of the random effects; and the linear predictors of the model consist of Xβ.

Using kernel density estimators of the linear predictors, the number of components K

was determined by visually inspecting the plot.

Mixture model specification

Bayesian Mixture Model was specified using an empirical prior distribution for the mean of

the K normal distributions.

π(y1, . . . , yN | µ1, σ1, ..., µk, σk, θ1, . . . , θk) =
N

∑
n=1

θ1N (yn | µ1, σ1) + . . . + θkN (yn | µk, σk),

where K is the number of components which was obtained as explained above.

Mixture model assumption: Mixture model assumes that each observation yi is drawn

from one of the components K independently as opposed to the entire dataset being drawn

from one of the components. Figure 3.3 is the graphical model where θ is the vector of

mixing parameters, µ is the vector of means for the component distributions, α is the prior

mean, and σ represents the prior standard deviation.

3.3.3 Hierarchical modeling

This is a statistical model with either parameters or data structured at different clustering

levels. In most cases, though not necessarily in all cases, data are nested within each other

(Gelman et al., 2014). These models consist both fixed effects and random effect (also known

as clustering factor). To derive the final prognostic model, hospital identity and the number

Page 26



Chapter 3

 

Figure 3.3: Bayesian graphical model

of subpopulations were used as a random effect.

3.3.4 Procedure of sampling

A set of 4 chains each with 2000 iterations for the mixture model and 1000 iterations for each

of the two mixed models were fitted using Stan. To have a good starting point for Markov

chain Monte Carlo (MCMC) runs, we threw away(burn-in) some iterations at the beginning

of the run for different models as follows; first 200 iterations for mixture model and 100

iterations for each of the two mixed models were discarded as burn-in in each sample. To

reduce autocorrelation in the estimates of the model, a thinning interval of 10 was used.

3.3.5 Assessing diagnostics of MCMC

Convergence of the Bayesian models was assessed by visually inspecting their trace-plots.

Convergence was assumed if the chains intermingled without a definite pattern. Further-

more, we used a scale reduction statistic R̂ (R-hat) as recommended by (Gelman and Rubin,

1992). Ideally, R̂ statistic quantifies the ratio of variance of the draws pooled from all chains

to the average variance of the draws for each chain. Therefore, at equilibrium state all chains

ought to have a R̂ of 1. If any chain has not converged to a common target distribution the

R̂ will be greater than 1.
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3.3.6 Posterior Predictive Distribution (PPD) of the model

To assess whether our model could be used to make predictions for the out-of-sample data,

we used posterior predictive density which is defined as follows. Given observation data y

and a model parameters θ, the posterior predictive distribution for new observation ỹ is

p(ỹ | y) =
∫

Θ
p(ỹ | θ) p(θ | y) dθ,

and the log posterior predictive density defined as;

log p(ỹ | y) = log
∫

Θ
p(ỹ | θ) p(θ | y) dθ.

Thus to validate the fit of our model, we generated new simulated data from the poste-

rior density and calculated the test statistics such as mean, standard deviation, minimum

and maximum which were compared visually with the observed data as recommended by

(Gelman et al., 2014).

3.3.7 Cross validation and model comparison

We used the Watanabe-Akaike information criterion (WAIC) and Leave-one-out cross-validation

(LOO) methods for Bayesian models as recommended by (Gelman et al., 2014) and (Vehtari

et al., 2016) to perform an internal validation of the derived model. To justify the added

complexity in the derived model, we compared its predictive performance against a model

without a random effect of the subpopulation. These methods uses posterior simulations to

estimate the out-of-sample predictive value.
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Results and Findings

4.1 Study population

4.1.1 Baseline characteristics of derivation cohort

This study included 47,596 participants who met eligibility criteria shown in Figure 3.2.

Proportion of female participants was 44.93% and age in months had a median of 20 (Range

10-46). Mortality varied considerably between hospitals with overall mortality being 2,399

(5.04%) with a range of 0% to 8.8% as shown in Figure 4.1. More than half of the study pop-

ulation (76.1% ) had a history of fever which suggested a possibility of malaria parasitemia

amongst the admissions. A detailed distribution of key indicators are summarized in Table

4.1.
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Figure 4.1: Distribution of mortality in study hospitals
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Table 4.1: Population characteristics

Indicator Count (%)
Cases 47596
Mortality 2399 (5.04)
Female 21384 (44.93)
Median age in Months(IQR) 20 (10 - 46)
Median weight(kgs) (IQR) 10 (7.5 - 14)
Prostration 3881 (8.15)
Grunting 4884 (10.26)
Can’t Drink 7535 (15.83)
History of Fever 36219 (76.1)
History of Diarrhea 14917 (31.34)
Convulsion 10462 (22.1)
AVPU<A 3045 (6.4)
Severe pallor 2895 (6.08)
Central cyanosis 278 (0.58)
Respiratory distress 16115 (33.86)
Impaired Consciousness 4274 (8.98)
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4.2 Prognostic model derivation

4.2.1 Detecting existence of subgroups in the larger population

Using Kernel density plots of the linear predictors expressed as

ηi = α + β1AVPUi + β2Central Cynosisi + . . . + βpGenderMalei

of Model 1, two homogeneous subgroups were identified in the study population as shown

in Figure 4.2. Visual inspection of the plot suggested a possibility of two data generating

mechanisms and also the existence of latent variables responsible in distinguishing two sub-

groups. Hence Model 1 was limited in this respect since it couldn’t account for such latent

variables.
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Figure 4.2: Subpopulations in the study population
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4.2.2 Identifying patients in each of the subpopulation using mixture

models

With the assumption that each observation yi could be drawn from one of 2 data generating

processes as shown in Figure 4.2, we developed a mixture model where we conditioned

on the assignment z ∈ {1, 2} to indicate to which data generating process each of 47,596

observations used in this study were generated.

Convergence of the mixture model was assessed using trace-plots shown in Figure 4.3

and we were convinced that all 4 chains converged to the target distribution. The R̂ was ap-

proximately 1 as shown in Table 4.2 which further suggested a convergence to equilibrium

distribution. The dreaded label switching which is an inherent problem in mixure model was

not of a concern in this case as shown in 4.4. From the results of the estimates of the param-

eters as shown in Table 4.2, the weights of the two mixture components were approximately

θ1 = 0.809 and θ2 = 0.191.

Table 4.2: Mixture model estimates

Parameter Mean standard deviation 95% Credible Interval Rhat
θ1 0.809 0.008 0.793 - 0.825 1.00
θ2 0.191 0.008 0.175 - 0.207 1.00
σ1 0.735 0.005 0.724 - 0.745 1.00
σ2 1.298 0.005 1.267 - 1.331 1.00
µ1 -3.795 0.007 -3.808 - -3.782 1.00
µ2 -2.287 0.049 -2.379 - -2.188 1.00
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Figure 4.4: Label-switching diagnostics
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Data Generating Processes

So as to make predictions, probabilistic clustering (soft clustering) were obtained from the

fitted posterior probabilities of component membership. For each 47,596 observations, we

picked one (hard clustering) of the two mixture components which had the highest proba-

bility and its corresponding probability. The distribution of each of probability for each of

the component is as shown in Figure 4.5
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Figure 4.5: Data generating processes
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4.2.3 Prognostic model results

All 4 chains used in estimating the prognostic logistic model converged to the target dis-

tribution in all of the predictors we were considering as shown in Figure 4.6. As a result,

we proceeded to make inference. Odds ratios (ORs) and 95 per cent confidence intervals

(CIs) are included to enhance interpretability. The AVPU scale which measures unconscious-

ness was the strongest predictor of mortality with odds of (AOR=2.94, 95% CI= 2.57 - 3.36).

Oedema (AOR= 2.66, 95% CI= 2.18 - 3.24) , pallor (AOR=2.09, 95% CI= 1.86 - 2.36) and the

presence of >= 3 severe comorbidities (AOR=2.19, 95% CI= 1.73 - 2.74) were also associated

with an increased risk of death as shown in Table 4.3 and in Figure 4.7. Indrawing was the

single most respiratory distress that the strongest predictor of mortality.

Table 4.3: Prognostic model estimates

Predictor Adjusted Coefficient(Odds ratio) 95% Credible Interval
AVPU Not Alert 2.94 2.57 - 3.36
central cyanosis 1.88 1.32 - 2.67
Grunting 0.84 0.71 - 0.99
Acidiotic breath 1.70 1.42 - 2.05
Severe pallor 0.84 0.71 - 0.99
Acidiotic breath 1.70 1.42 - 2.05
Cannot drink 1.89 1.7 - 2.11
History of fever 0.82 0.74 - 0.91
History of diarrhoea 1.44 1.3 - 1.59
Indrawing 2.04 1.83 - 2.28
Pallor 2.09 1.86 - 2.36
StiffNeck 1.97 1.6 - 2.42
skin pinch 1-2 seconds 1.23 1.09 - 1.38
Skin pinch >= 2 seconds 1.91 1.62 - 2.23
Jaundice 1.28 0.99 - 1.62
Oedema 2.66 2.18 - 3.24
1 comorbidity 1.10 0.9 - 1.33
2 comorbidity 1.75 1.43 - 2.15
>= 3 comorbidity 2.19 1.73 - 2.74
capillary refill 2 seconds 1.04 0.93 - 1.16
capillary refill Indeterminate 0.84 0.62 - 1.11
capillary refill > 2seconds 1.31 1.12 - 1.53
Weak Pulse 1.74 1.51 - 2.00
Male 0.80 0.73 - 0.88
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4.3 Posterior predictive density

4.3.1 Distributions of test statistics

Following the recommendation by (Gelman et al., 2014) for assessing the posterior predictive

distribution for the test statistic such as mean and standard deviation, we simulated data

from the posterior distribution and compared the distribution of mean in the generated

simulation with the mean in the observed outcome as shown in Figure 4.8. The value of test

statistic T which is computed from the observed data is shown as a vertical dark line T(y).

The plot also shows the vast majority of the simulated data sets under the model having

mean and standard deviation which approximately equal to the observed data. Hence we

concluded that our model made realistic predictions.
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Discussion

5.1 Discussion

5.1.1 Principal findings in relation to the literature

Using a robust Bayesian approach we derived a new prognostic risk tool to be used in Kenya

as well as other low-in-come countries(LIC). Bayesian approach allowed us to make more

accurate predictions with the data that was available. To the best of our knowledge, this

is the largest such study that utilizes routine data from multiple hospitals over a span of 3

years to have ever been undertaken in a predefined paediatrics population in LIC. Using the

posterior predictive distribution of the derived model, we simulated data and comparative

key statistics such as mean, standard deviation, minimum, a maximum predicted values as

recommended by (Gelman et al., 2014). Results are as shown in Figure 4.8 which made us

conclude that the derived model has a better calibration in out-of sample data. Furthermore,

we compared the empirical distribution of the observed data to the distributions of simu-

lated data from the posterior predictive distribution. The smoothed kernel density estimate

seemed identical as shown in Figure 5.1 an indicator of a well calibrated model. However,

since this validation was done on the simulated data of the derived model, we are aware that

it potentially has some limitation. Consequently, an external validation has to be performed

to assess transportability of this model before it is deployed in clinical practice.

The final model was to some extent complex given that it included more variables than

recently derived models such as (George et al., 2015) and (Berkley et al., 2003). But this com-
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Figure 5.1: Comparison of the distribution of the observed data vs simulated data from the
posterior predictive density
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plexity was necessary considering the fact that the chosen variables are routinely collected

at the bedside which do not require laboratory confirmation. Furthermore, the number of

variables used was justified with the number of events in the current study hence events-

per-variable rule as described by (Ogundimu et al., 2016) was not violated. Furthermore, no

statistical procedures were used such as step-wise methods as applied in the cited studies to

arrive at the final variables, rather the selection was based on the knowledge of the experts

in paediatrics. This approach has been endorsed by (Wynants et al., 2016) and (Ogundimu

et al., 2016) who have discouraged the automatic selection of features based on statistical

significance.

For the derived models to be useful in the out-of-sample data, the derivation dataset

has to be of better quality both in dependent variable and the prognostic factors. Although

variables such as vital signs (respiratory rate, pulse rate) were amongst the listed predictors of

mortality, we chose not to include them in the final model because we suspected a presence

of digit-preference by the observer; theses indicators are manually counted and sometimes

approximated to a nearest number as shown in the Appendix 1. Thus their quality is not

guaranteed. Exclusion of these variables, therefore meant that our estimates will not be

limited to only patients where these vital signs are manually counted.

Current prognostic models tend to over-predict or under-predict during external valida-

tions. Most of them are not well calibrated for the paediatric population and they make a

huge assumption that patients are alike! An assumption which is not entirely correct. As

demonstrated in this study, there exists subgroups that underlie the population under study.

These subgroups arise as a result of latent variables or some other random mechanisms at

play, which the traditional statistical methods fail to take into account hence the utility of

mixture model in this current study to identify observations that consists of subgroups as

shown in Figure 4.2. We have demonstrated that a model that included subgroups had

the better predictive ability than a model without. To achieve that we used leave-one-out

cross-validation methods for Bayesian models as described by (Vehtari et al., 2016).

The derived model included hospital identity as one of the random effect. This deci-

sion improved the fit and was justified by the fact that hospitals under study were located

in different geographical locations as shown in Figure 3.1 which serve different popula-

tions(rural/urban), different malaria endemicity(high/low) and also have different mortal-
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ity rates as shown in Figure 4.1.

Crepitations or indrawing as is commonly referred to was the single most respiratory

distress that the strongest predictor of mortality. These findings support the WHO recom-

mendation of using danger signs at admission as a proxy indicator of probable pneumonia

diagnosis. This observation coincides with the findings by (George et al., 2015).

5.1.2 Future work

Laboratory test results were not considered as one of the potential prognostic factors. This

is because laboratory results might not be easily available at admission especially for emer-

gence cases. Consequently, we consider this as a leeway for the future studies to include

laboratory tests as prognostic factors for the inpatient population. Furthermore, time-to-

event analysis should be considered as an extension of this work to come up with hazards

of deaths using prognostic factors identified in this study.
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5.1.3 Strengths and limitations

One crucial limitation is that, despite vitals signs (temperature, respiratory rate, pulse rate) be-

ing shown as a potential prognostic factor in studies elsewhere, such as (George et al., 2015),

this current study was persuaded to drop them from the list of useful risk factors based

on the strongest evidence of digit heaping. Another limitation was the use of diagnostic

episodes as one of our predictors, these episodes were solely based on the clinician’s im-

pression (not a laboratory test) so the possibility of false positives could not be ruled out.

One of the main strengths is that, this study was based on a large and a representative

pediatric population with data collected over time from different hospitals. Data abstraction

from a patient file had a series of rigorous data validation checks as detailed by (Ayieko et al.,

2015). This means that the data used in this study was of high quality. The use of multiple

imputation increased the power of this study since we were able to utilize all available data

without discarding any as is usually the case in complete-case analysis.
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Conclusion and Recommendations

6.1 Conclusion

Standard customary statistical methods have been successful to a larger extent in explana-

tory analysis. But the same is not true when applied in developing predictive models, partic-

ularly when using larger complex medical datasets. Given that patient are not alike, a statis-

tical methodology that clusters patients into homogeneous subpopulations should be used

to account for the inherent variability in the medical patients. Computational methodology

such as mixture models should be used to identify inherent subpopulations that underlie

the population of medical patients under study. Once each observation has been linked to

its corresponding subpopulation, a mixed effect prognostic model can be built where sub-

populations will serve as a random-effect (clustering variable). The resulting coefficients

will approximate a true data generating model.

Despite this current study being based on simple routine clinical signs, it has shown

a promise of better predictive ability. Thus, our results need to be externally validated to

assess the transportability of the model, particularly in a non-malaria regions because we

suspected the presence of malaria parasitemia in a larger proportion of derivation dataset.

We believe that this prognostic model could be invaluable in assessing the clinical care.
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6.2 Appendix

.0.1

Mixed effect model used to extract linear predictors. Hospitals used

as random effect

functions {

}

data {

int<lower=1> N; // total number of observations

int Y[N]; // response variable

int<lower=1> K; // number of population-level effects

matrix[N, K] X; // population-level design matrix

// data for group-level effects of ID 1

int<lower=1> J_1[N];

int<lower=1> N_1;

int<lower=1> M_1;

vector[N] Z_1_1;

}

transformed data {

}

parameters {

vector[K] b; // population-level effects

vector<lower=0>[M_1] sd_1; // group-level standard deviations

vector[N_1] z_1[M_1]; // unscaled group-level effects

}

transformed parameters {

// group-level effects

vector[N_1] r_1_1;

vector[N] eta;
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r_1_1 = sd_1[1] * (z_1[1]);

eta = X * b ;

for (n in 1:N) {

eta[n] = eta[n] + (r_1_1[J_1[n]]) * Z_1_1[n]; //Linear predictor

}

}

model {

// prior specifications

for( k in 2:K){

b[k]~ cauchy(0, 2.5); //Gelman 2008 (Coefficients)

}

b[1] ~ cauchy(0, 10); //Gelman 2008 (Intercept)

sd_1 ~ student_t(3, 0, 10);

z_1[1] ~ normal(0, 1); //Random effects

// likelihood contribution

Y ~ bernoulli_logit(eta);

}

generated quantities {

}

.0.2

Mixture model used to identify patients in subgroups

functions {

}

data {

int<lower=1> k_groups; // number of mixture components

int<lower=1> N; // number of data points

//real y[N]; // observations
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vector[N] y;

}

parameters {

simplex[k_groups] theta; // mixing weights

ordered[k_groups] mu; //ordered for identifiability

real<lower=0> sigma[k_groups]; // scales of mixture components

}

model {

//Contribution from each component

real contributions[k_groups]; // temp for log component densities

//priors

sigma ~ cauchy(0, 2.5);

mu ~ normal(0, 10);

theta ~ dirichlet(rep_vector(5,k_groups));

//likelihood

for (n in 1:N) {

for (k in 1:k_groups) {

contributions[k] = log(theta[k]) + normal_lpdf(y[n] | mu[k], sigma[k]);

}

target += log_sum_exp(contributions);

}

}

//Abstraction of probabilities of each observation belonging to a given mixture component

generated quantities {

matrix[N, k_groups] p;

for (n in 1:N){

vector[k_groups] ps;

for (K in 1:k_groups){

ps[K] = log(theta[K]) + normal_lpdf(y[n] | mu[K], sigma);

}
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p[n, ] = transpose(softmax(ps));

}

}

.0.3

Mixed effect model with hospitals & subpopulations as random ef-

fects

functions {

}

data {

int<lower=1> N; // total number of observations

int Y[N]; // response variable

int<lower=1> K; // number of population-level effects

matrix[N, K] X; // population-level design matrix

// data for group-level effects of ID 1

int<lower=1> J_1[N];

int<lower=1> N_1;

int<lower=1> M_1;

vector[N] Z_1_1;

// data for group-level effects of ID 2

int<lower=1> J_2[N];

int<lower=1> N_2;

int<lower=1> M_2;

vector[N] Z_2_1;

int prior_only; // should the likelihood be ignored?

}

transformed data {

int Kc;

matrix[N, K - 1] Xc; // centered version of X

vector[K - 1] means_X; // column means of X before centering
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Kc = K - 1; // the intercept is removed from the design matrix

for (i in 2:K) {

means_X[i - 1] = mean(X[, i]);

Xc[, i - 1] = X[, i] - means_X[i - 1];

}

}

parameters {

vector[Kc] b; // population-level effects

real temp_Intercept; // temporary intercept

vector<lower=0>[M_1] sd_1; // group-level standard deviations

vector[N_1] z_1[M_1]; // unscaled group-level effects

vector<lower=0>[M_2] sd_2; // group-level standard deviations

vector[N_2] z_2[M_2]; // unscaled group-level effects

}

transformed parameters {

// group-level effects

vector[N_1] r_1_1;

// group-level effects

vector[N_2] r_2_1;

r_1_1 = sd_1[1] * (z_1[1]);

r_2_1 = sd_2[1] * (z_2[1]);

}

model {

vector[N] mu;

mu = Xc * b + temp_Intercept;

for (n in 1:N) {

mu[n] = mu[n] + (r_1_1[J_1[n]]) * Z_1_1[n] + (r_2_1[J_2[n]]) * Z_2_1[n];

}

// prior specifications

sd_1 ~ student_t(3, 0, 10);
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z_1[1] ~ normal(0, 1);

sd_2 ~ student_t(3, 0, 10);

z_2[1] ~ normal(0, 1);

// likelihood contribution

if (!prior_only) {

Y ~ bernoulli_logit(mu);

}

}

generated quantities {

real b_Intercept; // population-level intercept

b_Intercept = temp_Intercept - dot_product(means_X, b);

}
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.0.4

End-Digit preference of the vital signs readings at admission

 

Figure 1: End-Digit preference of the vital signs readings at admission
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