STRATHMORE INSTITUTE OF MATHEMATICAL SCIENCES MASTER OF SCIENCE IN BIOMATHEMATICS END OF SEMESTER EXAMINATIONS

BMA 8204: INTRODUCTION TO COMPUTATIONAL STRUCTURAL BIOLOGY

DATE: 6th DECEMBER 2023

INSTRUCTIONS: Answer Question ONE and ANY other TWO questions. QUESTION ONE (30 MARKS)

(a) Define the following terms.

(i) Codon	[1 mark]
(ii) Open reading frame	[1 mark]
(iii) Nucleotide	[1 mark]

- (b) Show that for a simple brute force algorithm, that the number of possible alignments of two sequences of lengths *n* and *m* is approximated by $\frac{2^{2n}}{\sqrt{\pi n}}$. [3 marks]
- (c) Consider the following sequences

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCGAC

Determine

[3 marks]
[3 marks]
[2 marks] [2 marks]
[3 marks]
[3 marks]

(g) Briefly describe some of the limitations of gene predicting tools. [2 marks]

TIME: 3 HOURS

(h) Compare accepted point mutation model (PAM) and block substitution matrices (BLO-SUM) used in sequence alignment.
[3 marks]
(i) Describe the Hidden Markov chain models.
[3 marks]

QUESTION TWO (15 MARKS)

(a) Determine the optimal global alignment of the two sequences given by

CTCGCAGC

CATTTCAC

If the scoring is -1 for mismatch, +1 for a match and -2 for a gap. Show the scoring matrix.

[7 marks]

(b)	Define the following terms and give an example for each	
	(i) Sub-sequence.	

(i) Sub-sequence.	[2 marks]
(ii) Substring.	[2 marks]
(c) Outline the FASTA procedure.	[4 marks]

QUESTION THREE (15 MARKS)

(a) Outline the equations of motion of molecular dynamics and outline the limitations of molecular dynamics simulations.

	[6 marks]		
(b) Describe the process of protein synthesis			
	[5 marks]		
(c) Describe any three next generation sequencing technologies.	[4 marks]		
QUESTION FOUR (15 MARKS)			
(a) Describe the steps of accepted point mutation model developme	ent. [5 marks]		
(b) Outline the Needleman-Wunsch algorithm for sequence alignment	ent. [5 marks]		
(c) Define the term memoization.	[1 marks]		
(d) Describe how memoization has been achieved in this code below	N. [4 marks]		
<pre>def fib(n): fib_table = [1, 1] + (n-1)*[0] def get(i): if fib_table[i] != 0: return fib_table[i] else: fib_table[i] = get(i-1) + get(i-2) return fib_table[i] if n == 0 or n == 1: return 1 else: return get(n-1) + get(n-2)</pre>			