Mathematical Models for Effectiveness of Contact Tracing on the Onset of an Epidemic

Julius Tumwiine
Department of Mathematics

Mbarara University of Science and Technology

Why do we need mathematical models in infectious diseases epidemiology?

- A population-based model integrates knowledge and data about an infectious disease
 - natural history of the disease,
 - transmission of the pathogen between individuals
 - better understand the disease and its population-level dynamics
 - evaluate the population-level impact of interventions: vaccination, antibiotic or antiviral treatment, quarantine, mask (ex: SARS, influenza), ...

Why do we need mathematical models in infectious diseases epidemiology?

- "Mechanistic" models, i.e. models that try to capture the underlying mechanisms (natural history, transmission,) are used in order to better understand/predict the evolution of the disease in the population.
- provide useful tools for quantifying the spread of a potential epidemic and examine the effectiveness of control measures
- These models are dynamic → they can account for both direct and indirect "herd protection" effects induced by vaccination.

What questions need to be answered?

- Infectious diseases appear and disappear in a community in various ways:
- How severe would an epidemic be?
- How many individuals will be affected altogether and thus require treatment?
- What is the maximum number of people needing care and at any particular time?
- How long will the epidemic last?

Stochastic and deterministic models

- Stochastic epidemic models can reveal some important disease dynamics such as variability in the levels of an infection not predicted by deterministic models
- Stochastic models are Markovian process, that is, the a process in which the future is independent of the past, given the present.
- appropriate in small populations, where random events cannot be ignored
- Deterministic dynamics of diseases is a good approximation only when dealing with large populations

Contact tracing is an important epidemic control measure

- Recommended policy for tackling outbreaks of emerging or re-emerging infectious diseases
- Appropriate and effective when dealing with low numbers of cases that are locally targeted
- Local contact structure to find other infected individuals focus are the potential next-generation cases

Transmission

Cases

- Index the first case identified
- Primary the case that brings the infection into a population
- Secondary infected by a primary case
- Tertiary infected by a secondary case

Contact tracing

- Screening and contact tracing using a stochastic branching process approximations
- Appropriate when number of infected individuals is small in relation to the total population size
- Initial phase/stage of the epidemic is described by a branching process that resembles a growing tree
- It is a stochastic event on the pattern of contacts between members of the population
- Infection looked at as a slow branching process while contact tracing at a much shorter scale
- Tracing can take forms forward, backwards or both (full tracing)
- Identify an index case
- Each contact is traced with a probability, say p_c

Contact tracing (ctd)

- Branching processes is suited for the epidemiological study since they require data on cases
- They assume individual-level processes are independent and identically distributed
- Provide a simple way (iterative method) to estimate outbreak characteristics such as the
 - basic reproduction number
 - -Expected final size and duration of the epidemic
 - -Probability of observing a major epidemic

Contact tracing

- Stochastic simulations and moment closures (pair approximation) methods are used to investigate the utility of contact tracing in SIR and SIS models
- Differential equation models that assume homogeneous mixing of the population to study contact tracing whereby traced contacts of individuals found through screening
- single-step contact tracing, a fixed fraction of the of the contacts of an index case (the patient identified as being infected) are identified and treated
- key parameter is the fraction of treated contacts

Potential for spread of an infection

- The basic reproduction number R_0 = key quantity in infectious disease epidemiology: R_0 = average number of new infectious cases generated by one primary case during its entire period of infectiousness in a totally susceptible population.
- R_0 determines the required control effort
- R₀ < 1 → No invasion of the infection within the population; only small epidemics.
- R₀ > 1 → Endemic infection; the bigger the value of R₀ the bigger the potential for spread of the infection within the population.
- R₀ is a threshold value at which there is a « bifurcation » with exchange of stability between the « infection-free » state and the « endemic » state.

Evaluation of the potential for spread of an infection

Evaluation of the potential for spread of an infection

 Vaccination reduces the proportion of susceptibles in the population.

The minimal immunization coverage needed to

eliminate an infection in the population, p_c , is related to R_0 by the relation

$$p_c = 1 - (1/R_0)$$

Networks structures

- Network structures identify the potential transmission routes on how the disease is likely to be spread from one individual to another
- They easily depict the complexity of the real world Importance
 - capture some aspects of population heterogeneity
 - identify connections between individuals (or groups of individuals) allow an infectious disease to propagate
 - gives opportunities for a disease to spread
 - Networks are either static or dynamic through time
 - Static contact network models are appropriate for human interactions for a well represented disease generation time

Network Structure

- Contact tracing relate disease generation time in which all contacts within one disease generation are identified and tested for potential transmission
- A node in a contact network represents an individual host
- An edge (connection or link) between two nodes represents an interaction which may allow disease transmission
- Number of edges (contacts) attached to the node is its degree
- A network referred to as a tree, with a single node at the top called a root.

15

Mathematical models in infectious diseases epidemiology and semi-algebraic methods

- Nature of the network between individuals is important in determining R0 and the final size of an epidemic
- Number of connections per node k is a significant potential efficacy of contact tracing and disease control strategies
- Contacts of the infected patients are identified, located, and either treated, vaccinated or isolated to prevent their additional infecting patients
- Parameter of the branching process depend on the time since infection
- Tau- is the generation interval- the duration between onset of symptoms of a secondary case and its primary case.
- Local contact network structure affects the duration of generation interval

The SIR Epidemic Model

- First studied, Kermack & McKendrick, 1927
- Consider a disease spread by contact with infected individuals
- Individuals recover from the disease and gain further immunity from it.
- S = fraction of susceptibles in a population
- I = fraction of infecteds in a population
- R = fraction of recovereds in a population

SIR Epidemic model (ctd)

• Differential equations (involving the variables S, I, and R and their rates of change with respect to time t) are

$$\frac{dS}{dt} = -\rho SI, \quad \frac{dI}{dt} = \rho SI - \alpha I, \quad \frac{dR}{dt} = \alpha I$$

- We define the parameters:
- $\square \rho$ = the *infection rate*
- $\square \alpha =$ the *removal rate*
- Basic reproduction number is obtained from these parameters:
- $N_R = \rho / \alpha$

SIR Epidemic model

- This number represents the average number of infections caused by one infective in a totally susceptible population. As such, an epidemic can occur only if $N_R > 1$.
- If only a fraction S_0 of the population is susceptible, the reproduction number is N_RS_0 , and an epidemic can occur only if this number exceeds 1.
- Suppose a fraction V of the population is vaccinated against the disease. In this case, S₀=1-V and no epidemic can occur if

$$V > 1 - 1/N_R$$

End

Thank you for your Attention

Acknowledgements

- (1)DAAD
- (2) Mbarara University of Science & Technology
- (3) Conference Organizers