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a b s t r a c t

Group screening is widely used as an efficient method for identifying samples or factors
from a large population that are in some sense active. The focus in the present paper is on
screening blood samples for infectious diseases when errors in testing are present. Specific
attention is given to the introduction of a concentration effect, that is to settings in which
the error in testing a group of blood samples depends on the number of samples in that
group which are infected. Four array-based group screening schemes, the Dorfman, the
and, the or and a modification of the and scheme, are considered and their performance
appraised by deriving explicit formulae for the expected number of tests, the expected
number of false negatives and the expected number of false positives. The results are
illustrated by means of two examples. As an aside, relationships complementary to those
derived in the context of blood screening are developed within the area of group factor
screening.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In 1943 Dorfman introduced an efficient procedure for the screening of a large number of blood samples for a rare
disease. Specifically, the scheme involves testing pooled blood samples for the disease and then, in a second stage, testing
individual samples from those pools which tested positive for the disease in the first stage. In a complementary paper in
1961, Watson examined the related problem of group factor screening in cases of effect sparsity and proposed an approach
based on that of Dorfman (1943)which incorporates appropriately designed two-stage experiments andwhich, additionally,
accommodates the errors necessarily incurred in the test procedures. Since the publication of these two seminal papers,
there has been considerable interest in issues relating to the broad area of group screening and to blood screening and
group factor screening in particular (Dean and Lewis, 2006). There are, in turn, two primary areas of interest within the field
of blood screening, case identification and prevalence estimation, and both of these have been extensively researched. In
the context of case identification attention has focused, inter alia, on developing multi-stage and sequential schemes that
are in some sense more effective than the Dorfman procedure (Kim et al., 2007) and on relaxing the somewhat stringent
assumption that the probability that a blood sample is infected is constant (Bilder et al., 2010; McMahan et al., 2012).

There are surprisingly few reported studies on the effect of errors in testing in two-stage, and more generally in multi-
stage, group screening procedures for the identification of samples which are in some way defective, such as infected blood
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samples. A study based on ideas from the area of group factor screening is presented in the M.Sc. thesis of Habtesllassie
(2004) and some related early work is noted in the review by Hughes-Oliver (2006). In a more recent paper, Kim et al.
(2007) presented an in-depth investigation into the impact of test errors on hierarchical and two-dimensional square array
schemes for case identification, in particular by evaluating the expected number of tests and selected error-based operating
characteristics when the specificity and selectivity for group and individual tests are constant. Kim and Hudgens (2009)
have extended this study to accommodate three-dimensional arrays. In addition, Hedt and Pagano (2008a,b) have devised
an algorithm which accommodates errors in testing for square array pooling with halving at the retesting stage and have
reported their findings in two working papers. In contrast, there has been a number of studies on the impact of errors
in testing on the estimation of disease prevalence (Hughes-Oliver, 2006; Liu et al., 2012; Zhang et al., 2014). Interest has
centered, inter alia, on the dilution effect, that is on settings in which false negatives which arise when a group comprising
predominantly uninfected samples togetherwith a very few infected samples tests negative. This effectwas first discussed in
the literature in the paper of Hwang (1976) and has been explored in more recent studies by, for example, Wein and Zenios
(1996) and Hung and Swallow (1999). As noted earlier, errors in testing are necessarily embedded within the notion of
group factor screening. Studies in this area are reviewed inMorris (2006) and have been restricted primarily to the Dorfman
scheme and to extensions of that scheme to multi-stage and stepwise screening.

The aim of the present study is to extend the work reported in the literature on blood screening for the identification of
infected samples in the presence of test errors by borrowing strength from the area of group factor screening and by taking
cognizance of studies on prevalence estimation. More specifically, following Burns and Mauro (1987) and Habtesllassie
(2004), the aim is to investigate blood screening schemes in which there is a concentration effect, that is one in which
the errors in testing groups of blood samples depend on the number of infected individuals within the group. The paper is
structured as follows. In Section 2 issues relating to the screening of blood samples are discussed. In particular four two-stage
group screening schemes of interest are introduced and the expectednumber of tests, the expected number of false negatives
and the expected number of false positives in the presence of test errors are evaluated explicitly for each scheme. The results
are illustrated by means of examples in Section 3. In Section 4 the same issues as those discussed for blood screening are
briefly revisited within the context of group factor screening and the differences which emerge, particularly in relation to
the number of false negatives, are highlighted. Finally some broad conclusions and pointers for future research are given in
Section 5. Note that, for ease of exposition, the setting in which blood samples are tested for an infectious disease is adopted
here. However the discussion holds for a large number of group screening applications for case identification, including tests
for defective items and in drug discovery. Note also that the terms concentration effect in the context of case identification
and dilution effect in the context of prevalence estimation can be construed as being equivalent but that the emphasis in
their interpretation is somewhat different. Thus, following Burns and Mauro (1987), the term concentration effect is used
in the present study.

2. Blood screening

2.1. Preliminaries

Suppose that blood samples are arranged at random in a 2-dimensional array of cells. Four two-stage screening schemes
based on this array are considered to be of interest here and are introduced as follows. The Dorfman scheme (Dorfman, 1943)
involves the pooling and testing of samples in each row of the array and then the testing of individual samples in rows that
test positive for the disease. The and and the or schemes, which were introduced in the paper by Phatarfod and Sudbury
(1994) and the technical report by Langfeldt et al. (1997) respectively, are the same in the first stage and involve the pooling
and testing of samples in each row and, independently, the pooling and testing of samples in each column. In the second
stage of the and scheme only individual samples lying at the intersection of rows and columns which tested positive in the
first stage are tested. In contrast, the second stage of the or scheme involves testing all samples in the rows and columns
which tested positive in the first stage. Finally the scheme ‘‘square array without master pool testing’’ devised by Kim et al.
(2007) is introduced and extended to a rectangular array. In this latter scheme all rows and columns are tested independently
in the first stage. In the second stage, if at least one row and one column test positive, all cells at the intersection of positive
rows and positive columns are tested; otherwise, if only rows test positive then all cells in the positive rows are tested and
similarly for columns. For all four schemes, if no rows or columns test positive in the first stage then the procedure stops.

The probability that an individual blood sample is infected, that is the prevalence of the disease, is taken to be a constant
p, independent of the status of all other samples. In addition, this probability is assumed to remain unchanged on dilution,
that is on pooling. Most importantly here, following notions for factor screening developed in the seminal paper of Watson
(1961) and for group screening for defective items by Burns and Mauro (1987), errors in testing in stage one of each of the
screening schemes of interest are taken to depend on the number of infected cells in the group or pool. A concentration
effect is therefore introduced into the setting for blood screening. The errors in testing in the first stage can be quantified by
introducing the generic probability

π ⋆
1 (s, k) = P(a group of k cells tests positive given that s out of the k cells are infected)

where s = 0, . . . , k. Thus the sensitivity of the test is taken to depend on the number of infected cells in the group and is
given by π ⋆

1 (s, k) for s = 1, 2, . . . , k and the specificity of the test is given by 1−π ⋆
1 (0, k). The errors in testing an individual
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cell in the second stage are introduced through the probability

π ⋆
2 (a) = P(a cell with activity a tests positive)

where a = + denotes an infected cell and a = − an uninfected cell. The sensitivity of the test is thus given byπ ⋆
2 (+) and the

specificity by πN
2 (−) = 1 − π ⋆

2 (−). Finally, note that the errors in testing in the two stages for each of the blood screening
schemes are assumed to be independent. The two stages themselves are however inextricably linked in that the number of
cells tested in the second stage depends on the outcome of the first stage.

Three commonly used criteria within the context of errors in testing are examined in the present study in order to assess,
compare and contrast the performances of the four screening algorithms (Langfeldt et al., 1997; Kimet al., 2007). Specifically,
for a particular scheme S and a k1×k2 array of cells, these are the expected number of tests to be performed, ET ,S(k1, k2), the
expected number of false negatives, EFN,S(k1, k2), and the expected number of false positives, EFP,S(k1, k2). In the derivations
which follow the Dorfman scheme is denoted byD, the and scheme by A, the or scheme byO and the scheme devised by Kim
et al. (2007) and invoked here by A2. Note that the expected number of tests per cell is an operating characteristic usually
referred to as the efficiency and that the expected number of false positives and the expected number of false negatives are
termed the per-family error rate and the type II per-family error rate respectively (Kim et al., 2007). Note also that for a
particular scheme other operating characteristics, such as the pooling positive predictive value (PPV), that is the probability
that a cell is infected given that it tests positive, and the pooling negative predictive value (NPV), that is the probability that
a cell is not infected given that it tests negative, as delineated in Kim et al. (2007), can immediately be derived from the
expected numbers of false negatives and false positives. Specifically, the pooling sensitivity and the pooling specificity for a
scheme S are defined to be

Se(S) = 1 −
EFN,S(k1, k2)

k1k2p
and Sp(S) = 1 −

EFP,S(k1, k2)
k1k2(1 − p)

respectively and the pooling PPV and NPV are then given by

PPV (S) =
pSe(S)

pSe(S) + (1 − p)(1 − Sp(S))
and NPV (S) =

(1 − p)Sp(S)
(1 − p)Sp(S) + p(1 − Se(S))

.

2.2. Derivations

Consider first a generic derivation of the probabilities relating to the testing of a group G of k cells. Let G⋆ denote the event
that the pooled group of cells tests positive. Then

P(G⋆) =

k
s=0

P(G⋆
| s out of k cells are infected) P(s out of k cells are infected)

=

k
s=0

π ⋆
1 (s, k)


k
s


ps(1 − p)k−s.

Suppose also that G contains the cell A and let A+ denote the event that the cell A is infected and A− that it is not infected.
Then

P(G⋆
|A+) =

k−1
s=0

P(G⋆
|A+ and s out of k − 1 cells are infected)P(s out of k − 1 cells are infected)

=

k−1
s=0

π ⋆
1 (s + 1, k)


k − 1

s


ps(1 − p)k−1−s

and similarly

P(G⋆
|A−) =

k−1
s=0

π ⋆
1 (s, k)


k − 1

s


ps(1 − p)k−1−s.

LetR⋆
i , C

⋆
j andA∗

ij denote the events that the ith row, the jth columnand the (i, j)th cell respectively test positive andRN
i and

CN
j denote the events that the ith row and the jth column respectively test negative. Further, let A+

ij and A−

ij denote the events
that the blood sample in the (i, j)th cell Aij is infected and uninfected respectively, with P(A+

ij ) = p and P(A−

ij ) = 1 − p ≡ q.
Probabilities associated with the events R⋆

i , C
⋆
j , R

N
i and CN

j , derived from the generic results above, are presented in Table 1
and provide the essential building blocks for the ensuing calculations. The notation introduced in Table 1 is used throughout
the derivations which now follow.
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Table 1
Probabilities associated with the events R⋆

i , R
N
i , C

⋆
j and CN

j .

Probability Notation Expression Se and Sp

P(R⋆
i ) π∗

R
k2

s=0 π ⋆
1 (s, k2)

k2
s


ps(1 − p)k2−s (1 − Sp)qk2 + Se(1 − qk2 )

P(RN
i ) πN

R 1 −
k2

s=0 π ⋆
1 (s, k2)

k2
s


ps(1 − p)k2−s Spqk2 + (1 − Se)(1 − qk2 )

P(C⋆
j ) π∗

C
k1

s=0 π ⋆
1 (s, k1)

k1
s


ps(1 − p)k1−s (1 − Sp)qk1 + Se(1 − qk1 )

P(CN
j ) πN

C 1 −
k1

s=0 π ⋆
1 (s, k1)

k1
s


ps(1 − p)k1−s Spqk1 + (1 − Se)(1 − qk1 )

P(R⋆
i |A

+

ij ) π∗

R|+

k2−1

s=0
π ⋆
1 (s + 1, k2)


k2 − 1

s


ps(1 − p)k2−1−s Se

P(RN
i |A+

ij ) πN
R|+ 1 −

k2−1

s=0
π ⋆
1 (s + 1, k2)


k2 − 1

s


ps(1 − p)k2−1−s 1 − Se

P(R⋆
i |A

−

ij ) π∗

R|−

k2−1

s=0
π ⋆
1 (s, k2)


k2 − 1

s


ps(1 − p)k2−1−s (1 − Sp)qk2−1

+ Se(1 − qk2−1)

P(RN
i |A−

ij ) πN
R|− 1 −

k2−1

s=0
π ⋆
1 (s, k2)


k2 − 1

s


ps(1 − p)k2−1−s Spqk2−1

+ (1 − Se)(1 − qk2−1)

P(C⋆
j |A

+

ij ) π∗

C |+

k1−1

s=0
π ⋆
1 (s + 1, k1)


k1 − 1

s


ps(1 − p)k1−1−s Se

P(CN
j |A+

ij ) πN
C |+

1 −

k1−1

s=0
π ⋆
1 (s + 1, k1)


k1 − 1

s


ps(1 − p)k1−1−s 1 − Se

P(C⋆
j |A

−

ij ) π∗

C |−

k1−1

s=0
π ⋆
1 (s, k1)


k1 − 1

s


ps(1 − p)k1−1−s (1 − Sp)qk1−1

+ Se(1 − qk1−1)

P(CN
j |A−

ij ) πN
C |−

1 −

k1−1

s=0
π ⋆
1 (s, k1)


k1 − 1

s


ps(1 − p)k1−1−s Spqk1−1

+ (1 − Se)(1 − qk1−1)

2.2.1. Dorfman
Consider first the Dorfman scheme for screening blood samples. Expressions for the criteria of interest can be derived

by arguments similar to those used by Watson (1961) in the context of factor screening and more specifically by Langfeldt
et al. (1997) in the context of blood screening with blockers. Thus the expected number of tests follows immediately as

ET ,D(k1, k2) = k1 + k1k2 P(R⋆
i )

= k1 + k1k2 π∗

R .

The expected number of true positives is derived by conditioning on the status of a particular cell and is given by

ETP,D(k1, k2) = k1 k2 P(A+

ij ∩ R⋆
i ∩ A∗

ij)

= k1 k2 P(R⋆
i |A

+

ij )P(A∗

ij|A
+

ij ) P(A+

ij )

= k1 k2 pπ∗

R|+ π ⋆
2 (+)

and the expected number of false negatives is therefore

EFN,D(k1, k2) = k1 k2 P(A+

ij ) − ETP,D(k1, k2)

= k1k2 p {1 − π∗

R|+ π ⋆
2 (+)}.

The expected number of false positives is similarly derived as

EFP,D(k1, k2) = k1k2 P(A−

ij ∩ R⋆
i ∩ A∗

ij)

= k1k2 P(R⋆
i |A

−

ij )P(A∗

ij|A
−

ij ) P(A−

ij )

= k1k2 (1 − p) π∗

R|− π ⋆
2 (−).

These results are in accord with the results derived by Burns and Mauro (1987) for the special case of multiple testing for
defective items corresponding to the Dorfman scheme.

2.2.2. The and algorithm
The expected number of tests, the expected number of false negatives and the expected number of false positives for

the and and the or schemes can be derived by invoking arguments similar to those for the Dorfman scheme. Specifically,
the required expressions for the and scheme can be obtained by replacing the event R⋆

i in the derivations of the previous
sectionwith the event R⋆

i ∩C⋆
j and by observing that the testing of rows and columns is independent so that P(R⋆

i ∩C⋆
j |A

+

ij ) =
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P(R⋆
i |A

+

ij ) P(C⋆
j |A

+

ij ) and P(R⋆
i ∩ C⋆

j |A
−

ij ) = P(R⋆
i |A

−

ij ) P(C⋆
j |A

−

ij ). Thus the expected number of tests is given by

ET ,A(k1, k2) = k1 + k2 + k1k2P(R⋆
i ∩ C⋆

j )

= k1 + k2 + k1k2

P(R⋆

i |A
+

ij )P(C⋆
j |A

+

ij )P(A+

ij ) + P(R⋆
i |A

−

ij )P(C⋆
j |A

−

ij )P(A−

ij )


= k1 + k2 + k1k2

π∗

R|+π∗

C |+
p + π∗

R|−π∗

C |−
(1 − p)


,

the expected number of false negatives by

EFN,A(k1, k2) = k1k2{P(A+

ij ) − P(A+

ij ∩ (R⋆
i ∩ C⋆

j ) ∩ A∗

ij)}

= k1k2

P(A+

ij ) − P(R⋆
i |A

+

ij )P(C⋆
j |A

+

ij )P(A∗

ij|A
+

ij )P(A+

ij )


= k1 k2 p {1 − π∗

R|+ π∗

C |+
π ⋆
2 (+)}

and the expected number of false positives by

EFP,A(k1, k2) = k1k2P(A−

ij ∩ (R⋆
i ∩ C⋆

j ) ∩ A∗

ij)

= k1k2P(R⋆
i |A

−

ij ) P(C⋆
j |A

−

ij ) P(A∗

ij|A
−

ij ) P(A−

ij )

= k1 k2 (1 − p) π∗

R|−π∗

C |−
π ⋆
2 (−).

2.2.3. The or algorithm
Expressions for the criteria of interest in theor scheme followby replacing the event R⋆

i in the derivations for theDorfman
scheme with the event R⋆

i ∪ C⋆
j , by invoking the standard probability relationship P(R⋆

i ∪ C⋆
j ) = P(R⋆

i ) + P(C⋆
j ) − P(R⋆

i ∩ C⋆
j )

and by using the results for the and scheme. The results for the or scheme can then be summarized succinctly as follows.
Thus the expected number of tests is given by

ET ,O(k1, k2) = k1 + k2 + k1k2P(R⋆
i ∪ C⋆

j )

= k1 + k2 + k1k2{P(R⋆
i ) + P(C⋆

j ) − P(R⋆
i ∩ C⋆

j )}

= k1 + k2 + k1k2{π∗

R + π∗

C − [π∗

R|+ π∗

C |+
p + π∗

R|− π∗

C |−
(1 − p)]},

the expected number of false negatives by

EFN,O(k1, k2) = k1k2{P(A+

ij ) − P(A+

ij ∩ (R⋆
i ∪ C⋆

j ) ∩ A∗

ij)}

= k1 k2

P(A+

ij ) − P(R⋆
i ∪ C⋆

j |A
+

ij ) P(A∗

ij|A
+

ij ) P(A+

ij )


= k1 k2

P(A+

ij ) − [P(R⋆
i |A

+

ij ) + P(C⋆
j |A

+

ij ) − P(R⋆
i ∩ C⋆

j |A
+

ij )] P(A∗

ij|A
+

ij ) P(A+

ij )


= k1 k2 p {1 − (π∗

R|+ + π∗

C |+
− π∗

R|+π∗

C |+
) π ⋆

2 (+)}

and the expected number of false positives by

EFP,O(k1, k2) = k1k2 P(A−

ij ∩ (R⋆
i ∪ C⋆

j ) ∩ A∗

ij)

= k1k2P(R⋆
i ∪ C⋆

j |A
−

ij ) P(A∗

ij|A
−

ij ) P(A−

ij )

= k1k2[P(R⋆
i |A

−

ij ) + P(C⋆
j |A

−

ij ) − P(R⋆
i ∩ C⋆

j |A
−

ij )] P(A∗

ij|A
−

ij ) P(A−

ij )

= k1 k2 (1 − p) (π∗

R|− + π∗

C |−
− π∗

R|−π∗

C |−
) π ⋆

2 (−).

2.2.4. The A2(k1, k2) algorithm
In evaluating the operating characteristics for the A2(k1, k2) scheme, the event R⋆

i ∩ C⋆
j , that is the and scheme, the

event R⋆
i ∩

k2
j=1 CN

j , that is the case in which the ith row of the array tests positive and all columns test negative and the
event ∩

k1
i=1 RN

i ∩ C⋆
j , that is the case in which the jth column tests positive and all rows test negative for i = 1, . . . , k1 and

j = 1, . . . , k2, must necessarily be considered (Kim et al., 2007). The expected number of tests, the expected number of
false negatives and the expected number of false positives associated with the event R⋆

i ∩ C⋆
j have already been derived in

Section 2.2.2. It is therefore only necessary to consider the event R⋆
i ∩

k2
j=1 CN

j with i = 1, . . . , k1. The evaluations associated
with the event ∩

k1
i=1 RN

i ∩ C⋆
j with j = 1, . . . , k2, mirror those for the event R⋆

i ∩
k2
j=1 CN

j and can then be written down.
The requisite derivations for the A2 scheme are in fact somewhat intricate and, for conciseness, are presented in the

Appendix. Thus, consider the term

S̄(e,R) = P(R⋆
i |at least one A+

ij ) =

k2
s=1

π ⋆
1 (s, k2)

k2
s


ps(1 − p)k2−s

(1 − qk2)
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which can be interpreted as the average sensitivity over rows for the stage one test procedure, together with the term S̄(e,C)

which is equal to S̄(e,R) but with k2 replaced by k1. It then follows that the expected number of tests is given by

ET ,A2(k1, k2) = k1 + k2 + k1k2


P(R⋆

i ∩ C⋆
j ) + P


R⋆
i

k2
j=1

CN
j


+ P


k1
i=1

RN
i ∩ C⋆

j


= k1 + k2 + k1k2


π∗

R|+π∗

C |+
p + π∗

R|−π∗

C |−
(1 − p)

+

π ⋆
1 (0, k2) − S̄(e,R)


(πN

C |−
q)k2 + S̄(e,R)(π

N
C )k2

+

π ⋆
1 (0, k1) − S̄(e,C)


(πN

R|− q)k1 + S̄(e,C)(π
N
R )k1


,

the expected number of false negatives by

EFN,A2(k1, k2) = k1k2p


1 −


P(R⋆

i ∩ C⋆
j ∩ A⋆

ij|A
+

ij ) + P


R⋆
i

k2
j=1

CN
j ∩ A⋆

ij|A
+

ij


+ P


k1
i=1

RN
i ∩ C⋆

j ∩ A⋆
ij|A

+

ij


= k1k2 p


1 − [π∗

R|+ π∗

C |+
+ π∗

R|+(πN
C )k2−1πN

C |+
+ π∗

C |+
(πN

R )k1−1πN
R|+]π ⋆

2 (+)


and the expected number of false positives by

EFP,A2(k1, k2) = k1k2


P(R⋆

i ∩ C⋆
j |A

−

ij ) + P


R⋆
i

k2
j=1

CN
j |A−

ij


+P


k1
i=1

RN
i ∩ C⋆

j |A
−

ij


P(A∗

ij|A
−

ij ) P(A−

ij )

= k1k2(1 − p)

π∗

R|−π∗

C |−
+ (π ⋆

1 (0, k2) − S̄(e,R|−))(π
N
C |−

q)k2−1πN
C |−

+ S̄(e,R|−)(π
N
C )k2−1πN

C |−

+ (π ⋆
1 (0, k1) − S̄(e,C |−))(π

N
R|− q)k1−1πN

R|− + S̄(e,C |−)(π
N
R )k1−1πN

R|−


π ⋆
2 (−).

2.2.5. Sensitivity and specificity: No dependence on the numbers of infected cells
Suppose now that the sensitivity and specificity associated with the rows and columns of a k1 × k2 array do not depend

on s, the number of infected cells. Thus let

π ⋆
1 (s, k) = Se for s = 1, 2, . . . , k and π ⋆

1 (0, k) = 1 − Sp
for k = k1 and k2. Then the probabilities and conditional probabilities associated with the events R⋆

i and C⋆
j follow

immediately and are given in the last column of Table 1. In addition suppose that the sensitivity and specificity are the
same for testing an individual cell as for testing the rows and columns, that is π ⋆

2 (+) = Se and π ⋆
2 (−) = 1 − Sp. For

conciseness, following Kim et al. (2007), let

t(k) = (1 − Sp)qk + Se(1 − qk).

Then, for the Dorfman scheme,

ET ,D(k1, k2) = k1 + k1k2 t(k2)

EFN,D(k1, k2) = k1k2 p {1 − S2e }
EFP,D(k1, k2) = k1 k2 (1 − p) (1 − Sp) t(k2 − 1)

in accord with the results of Kim et al. (2007), for the and scheme,

ET ,A(k1, k2) = k1 + k2 + k1k2 [pS2e + (1 − p) t(k1 − 1) t(k2 − 1)]

EFN,A(k1, k2) = k1k2 p {1 − S3e }
EFP,A(k1, k2) = k1 k2 (1 − p) (1 − Sp) t(k1 − 1) t(k2 − 1)

and for the or scheme,

ET ,O(k1, k2) = k1 + k2 + k1k2 {t(k1) + t(k2) − [pS2e + (1 − p) t(k1 − 1) t(k2 − 1)]}

EFN,O(k1, k2) = k1 k2 p

1 − S2e (2 − Se)


EFP,O(k1, k2) = k1 k2 (1 − p) (1 − Sp) [t(k1 − 1) + t(k2 − 1) − t(k1 − 1)t(k2 − 1)].

Derivations for the A2(k1, k2) scheme are again a little more involved than those for the Dorfman, the and and the or
schemes and are detailed in the Appendix. Thus the expected number of tests, the expected number of false negatives and
the expected number of false positives for the A2(k1, k2) scheme are given by

ET ,A2(k1, k2) = k1 + k2 + k1k2

S2e p + t(k1 − 1)t(k2 − 1) (1 − p)

+ (1 − Se − Sp)

[(1 − t(k1 − 1)) q]k2 + [(1 − t(k2 − 1)) q]k1


+ Se


[(1 − t(k1 − 1))]k2 + Se[(1 − t(k2 − 1))]k1


,

EFN,A2(k1, k2) = k1k2 p

1 − S3e − S2e (1 − Se)


(1 − t(k1))k2−1

+ (1 − t(k2))k1−1
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Table 2
Ordering of the group screening algorithms for expected numbers.

Number Order

ET ,S(k1, k2) O > A2 ≥ A
EFN,S(k1, k2) A > D > O and A ≥ A2
EFP,S(k1, k2) A < D < O and A ≤ A2

and

EFP,A2(k1, k2) = k1k2(1 − p)(1 − Sp) {t(k1 − 1)t(k2 − 1)

+ (1 − Se − Sp)

[1 − t(k1 − 1)]k2 qk2−1

+ [1 − t(k2 − 1)]k1 qk1−1
+ Se


[1 − t(k1)]k2 + [1 − t(k2)]k1


respectively.

Finally note that for perfect testing Se = Sp = 1. Thus

ET ,D(k1, k2) = k1 + k1k2 (1 − qk2}

ET ,A(k1, k2) = k1 + k2 + k1k2{1 − qk1 − qk2 + qk1+k2−1
}

ET ,O(k1, k2) = k1 + k2 + k1k2 {1 − qk1+k2−1
}

ET ,A2(k1, k2) = ET ,A(k1, k2)

and EFN,S(k1, k2) = EFP,S(k1, k2) = 0 for all four schemes, that is for S = D, A,O and A2. These results are in accord with
those presented, inter alia, in the papers by Langfeldt et al. (1997) and Kim et al. (2007), in the M.Sc. thesis of Habtesllassie
(2004) and in the paper by Morris (1987) in the context of group factor screening.

2.2.6. Comparisons
Comparisons with respect to the performance of the four two-stage blood testing schemes of interest can now be made.

Specifically, it is clear from the intrinsic nature of the associated algorithms that the expected number of tests for the or
scheme is greater than that for the A2 scheme which in turn is greater than that for the and scheme, that is O > A2 ≥ A.
The relation of the expected number of tests for the Dorfman scheme to this ordering is not however clear. It can also be
deduced from the formulae presented in Sections 2.2.1–2.2.4 that the expected number of false negatives is greater for the
and scheme than that for the Dorfman scheme which in turn is greater than that for the or scheme, that is A > D > O,
and that the expected number of false negatives for the A2 scheme is less than that for the and scheme, that is A2 ≤ A.
Furthermore the orderings of the schemes with respect to the expected number of false positives are the reverse of those
for the expected number of false negatives, that is A < D < O and A2 ≥ A. These observations are summarized in Table 2.
It is now immediately clear from these relationships that if the expected numbers of tests, of false negatives and of false
positives are all of interest then no single scheme yields optimal results. Rather, following Langfeldt et al. (1997), a costing
of these operating characteristics is required and must necessarily be provided by the clinical researcher.

3. Examples

In order to construct examples it is first necessary to specify the explicit form of the probability that a group of k cells
tests positive given that s cells are infected, that is π ⋆

1 (s, k), together with the values of the sensitivity and specificity
of the individual tests, π ⋆

2 (+) and π ⋆
2 (−) respectively. Two forms for the probability π ⋆

1 (s, k), one taken from the case
identification literature and one from the prevalence estimation literature, are introduced in the examples which follow
and their attendant operating characteristics are explored.

3.1. Example 1

The form of π ⋆
1 (s, k) proposed by Burns and Mauro (1987) within the context of case identification is adopted in this

example and is given by

π ⋆
1 (s, k) = α1 + (1 − α1 − α2)

 s
k

γ

for s = 0, . . . , k, (1)

where 0 ≤ α1, α2 ≤ 1, 0 < α1 + α2 < 1 and 0 ≤ γ ≤ 1. Note that the specificity for group testing is given by
π ⋆
1 (0, k) = π ⋆

1 (0) = α1 and that π ⋆
1 (k, k) = 1 − α2, thereby enabling formula (1) to be meaningfully calibrated. Note

also that for γ = 1, π ⋆
1 (s, k) is linear in s and that as γ approaches 0, so π ⋆

1 (s, k) for s = 1, 2, . . . , k approaches the constant
π ⋆
1 (k, k). Plots of the probability π ⋆

1 (s, k) given in formula (1) against s for s = 0, . . . , k, k = 8, α1 = 0.01, α2 = 0.1 and
selected values of γ are presented in Fig. 1(a) (see also Burns and Mauro (1987)).
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a

b

Fig. 1. Plots of π ⋆
1 (s, k) against s for k = 8, s = 0, 1, . . . , 8, α1 = 0.01, α2 = 0.1 and (a) the Burns and Mauro (1987) sub-model with γ =

0, 0.1, 0.25, 0.5, 0.75, 1.0 and (b) the Hung and Swallow (1999) sub-model with f1 = 1.25 and f2 = 0, 0.1, 1, 10, 100.

Consider now evaluating the expected number of tests, the expected number of false negatives and the expected number
of false positives for an 8× 12 rectangular array over the range of prevalences 0 < p ≤ 0.1. Suppose that in order to model
a concentration effect, the form of π ⋆

1 (s, k) given in (1) is adopted with α1 = 0.01, α2 = 0.1 and with k = 8 for testing the
rows and k = 12 for testing the columns. Suppose also that the sensitivity and specificity of individual tests are taken to be
π ⋆
2 (+) = 0.9 and πN

2 (−) = 0.99 respectively and that γ = 0.1. Then, for these settings, plots of ET ,S(8, 12), EFN,S(8, 12)
and EFP,S(8, 12) against p for S = D, A,O and A2 and 0 < p < 0.05 are presented in Fig. 2 and plots of the pooling positive
and pooling negative predictive values against p for 0 < p < 0.005 and 0 < p ≤ 0.05 respectively in Fig. 3.

Key features relating to the present example can be identified from the plots in Figs. 2 and 3, together with some
additional minor calculations. Specifically, it is clear from the plots in Fig. 2 that the relationships between the four schemes,
the Dorfman, the and, the or and the A2, for the expected number of tests, the expected number of false negatives and
the expected number of false positives as established in Section 2.2.6 hold. In addition it is clear that orderings that could
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a

b

c

Fig. 2. Plots of (a) the expected number of tests, (b) the expected number of false negatives and (c) the expected number of false positives against p for
0 < p < 0.05 and the Burns and Mauro (1987) sub-model with k1 = 8, k2 = 12, α1 = 0.01, α2 = 0.1, π ⋆

2 (+) = 0.9, πN
2 (−) = 0.99 and γ = 0.1.

not be quantified earlier change with p for small values of p, as indicated in Fig. 2. Note that no further changes in the
ordering occurred from the end-point prevalence p = 0.05 in Fig. 2 up to p = 0.1. Note also that the expected number of
tests, the expected number of false negatives and the expected number of false positives for the A2 scheme approach the
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b

a

Fig. 3. Plots of (a) the pooling positive predicted values against p for 0 < p < 0.005 and (b) the pooling positive predicted values against p for 0 < p < 0.05
and the Burns and Mauro (1987) sub-model with k1 = 8, k2 = 12, α1 = 0.01, α2 = 0.1, π ⋆

2 (+) = 0.9, πN
2 (−) = 0.99 and γ = 0.1.

corresponding values for the and scheme as p increases. In fact for prevalences, p, greater than 0.1 there is little advantage
to be gained by invoking the A2 as opposed to the and scheme. Finally note, more generally, that the differences between
the expected numbers of tests, of false negatives and of false positives across certain schemes and prevalences are relatively
small and that this could influence the choice of a suitable scheme.

The plots of the pooling PPV and the pooling NPV against p shown in Fig. 3 are particularly interesting since these values
are of critical importance in testing for a given disease. Specifically, the pooling PPVs for the and scheme are very close to 1
for all p in the range 0 < p < 0.1, as compared with those for the Dorfman, the or and the A2 schemes, thereby reflecting
the fact that the expected numbers of false positives for the and scheme are close to 0 and hence that the associated pooling
specificities are close to 1. In contrast, for all the four schemes of interest the pooling NPVs are close to 1, ranging from 1 to
0.948 for prevalences p from 0 to 0.1. Thus, on balance, it would seem that in such cases the and scheme is to be preferred
within the context of pooling PPVs and NPVs.

Clearly the above results relate to the present example. Examples with π ⋆
1 (s, k) given by formula (1) with the parameter

γ ranging from 0 to 1 and with square and rectangular arrays were also investigated and were found to exhibit similar
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overall features to those presented here but with different cut-off values and different expected numbers of tests, false
negatives and false positives. For example, for an 80 × 80 array, the plots of the expected number of tests, false negatives
and false positives against the prevalence for the and and the A2 schemes are effectively the same, down to a prevalence of
approximately 0.0015.

3.2. Example 2

Hung and Swallow (1999) introduced a sub-model for π ⋆
1 (s, k) of the form

π ⋆
1 (s, k) =


α1 + (1 − α1 − α2)

s
(ek−sf1 − 1)f2 + s

if 0 ≤ s <
k
f1

1 − α2 if
k
f1

≤ s ≤ k
(2)

within the context of prevalence estimation. The term f1 > 0 defines a threshold for s, namely k
f1
, at and abovewhich there is

no concentration (or dilution) effect and the term f2 > 0 scales the concentration effect if it is present. Plots of the probability
π ⋆
1 (s, k) given in formula (2) against s for s = 0, . . . , k, k = 8, α1 = 0.01, α2 = 0.1, f1 =

4
3 , and thus a threshold of s = 6,

and selected values of f2 are presented in Fig. 1(b).
Consider now evaluating the expected number of tests, the expected number of false negatives and the expected number

of false positives for an 8× 12 rectangular array. Suppose that the concentration effect is modeled with π ⋆
1 (s, k) of the form

(2), that α1 = 0.01 and α2 = 0.1 and that the sensitivity and specificity of individual tests are taken to be π ⋆
2 (+) = 0.9 and

πN
2 (−) = 0.99. Suppose further, and in contrast to the form for π ⋆

1 (s, k) given in Example 1 for which there is no built-in
threshold for s, that a threshold is introduced here. Specifically, following Hung and Swallow (1999), suppose that f1 = 5 so
that the threshold is low and is given by s = 2 for the 8 rows and s = 3 for the 12 columns. Plots of ET ,S(8, 12), EFN,S(8, 12)
and EFP,S(8, 12) against p for S = D, A,O and A2, for f2 = 1 and for a suitable range of prevalences 0 < p ≤ 0.28 are
presented in Fig. 4.

The setting adopted in this example is similar to that of Example 1 but it is clear from a comparison of Figs. 2 and 4 that
certain features of the plots for ET ,S(8, 12), EFN,S(8, 12) and EFP,S(8, 12) are very different. Thus, while the ordering of the
Dorfman, and, or and A2 schemes summarized in Table 2 necessarily holds, the shapes of the plots are not the same and
the values of the prevalence at which the plotted curves for the schemes cross over are very much higher in the present
example than those in Example 1.

These two examples highlight the fact that the operating characteristics for the four schemes of interest depend
sensitively on the sub-model adopted for the probability π ⋆

1 (s, k), a fact which impacts seriously on the selection of a blood
screening protocol. Thus in practice it is usual to have estimates, albeit approximate, for the prevalence, for values of α1
and α2 and for the sensitivity and specificity of the individual tests associated with a particular setting (Kim et al., 2007).
However selecting a suitable form for the probability π ⋆

1 (s, k) is more challenging. Such a selection would most probably
necessitate conducting a preliminary experiment involving varying numbers of infected cells in groups of a specified size,
followed by the fitting of a suite of sub-models such as those discussed in Examples 1 and 2 to the data in order to find the
best-fitting model.

4. Group factor screening

Suppose that a large number of factors that could potentially influence a response are to be investigated in a two-stage
group factor screening procedure and that only a small proportion of the factors are effective. Suppose further that each
factor can be set at one of two levels, ‘‘high’’ and ‘‘low’’, that a main effects only model is to be invoked to fit the data and
that the assumptions for the setting delineated in Watson (1961) for single-group and Morris (2006) for single- and multi-
group screening hold. Then the probability that a factor is active, that is effective in influencing the response, is taken to be
a constant p, the effect of any factor on the response, denoted ∆, is ∆ > 0 for all factors that are active and ∆ = 0 for all
factors not active, and the directions of the effects are known. In the first stage of the group screening procedure the factors
are allocated at random to one or more groups and the individual factors within each group are all set at ‘‘high’’ or all set
at ‘‘low’’, thereby defining grouped factors at two levels. Suppose here that g grouped factors each comprising k factors are
tested in an appropriate experiment at the α level of significance. Then the probability that a grouped factor is declared
active, given that s factors within the group are active, where 0 ≤ s ≤ k, can be expressed succinctly as π ⋆

1 (s, k; g; α). Note
that the dependence of this probability on the number of groups g emanates from the nature of the test, and specifically
from the form of the test statistic.

Consider now settings for group factor screening which mirror the settings for blood screening discussed in Section 2.
Specifically, suppose that the factors are organized in a k1 × k2 array and that the Dorfman, and, or and A2 schemes
are of interest. Then, since k1 and k2 are fixed, the arguments relating to the first stage of the procedure are unchanged
and the expressions for the expected number of tests are the same, other than the generic notation π ⋆

1 (s, k; g; α) which
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a

b

c

Fig. 4. Plots of (a) the expected number of tests, (b) the expected number of false negatives and (c) the expected number of false positives against p for
0 < p < 0.28 and the Hung and Swallow (1999) sub-model with k1 = 8, k2 = 12, α1 = 0.01, α2 = 0.1, π ⋆

2 (+) = 0.9, πN
2 (−) = 0.99, f1 = 5 and f2 = 1.
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replaces π ⋆
1 (s, k). In the second stage of screening the groups are disassembled and all factors within groups which are

declared active in the first stage are tested together in an appropriate single experiment. Specifically, suppose that the test
H0 : ∆ = 0 against HA : ∆ > 0 for an individual factor is performed at the β level of significance. Then the probability
that an inactive factor is declared active is β and expressions for the expected number of false positives for the group factor
screening schemes of interest are the same as those for the corresponding blood screening schemes. However it follows
from the form of the test statistic that the power of the test depends on the number of factors carried through from the
first stage, which is a random variable. This dependency must be introduced into the derivation of expressions for the
expected number of true positives, and thus of false negatives, as shown for the Dorfman scheme by Watson (1961) and
Gurnow (1965).

In the present case, following Gurnow (1965), the expected number of true positives for the and scheme, is given by

ETP,A(k1, k2) =
π∗

R|+π∗

C |+
p

pπ∗

R|+π∗

C |+
+ (1 − p)π∗

R|−π∗

C |−


feasible
n,m

nmπ ⋆
2 (+; n,m; β)P(N = n,M = m)

where N and M are random variables corresponding to the number of rows and the number of columns declared active
in the first stage and π ⋆

2 (+; n,m; β) denotes the power of the test for N = n and M = m. The expected number of false
negatives follows immediately. Note that N and M are inextricably linked and that their joint distribution would seem to
be intractable, at least for large arrays (Habtesllassie, 2004). Thus calculations of ETP,A(k1, k2) must necessarily be done by
simulation. Similar derivations and considerations hold for the or and the A2 group factor screening schemes and indeed
more broadly for any array-based scheme. It should be emphasized that the results derived here for factor screening are
based on the fact that the errors in testing relating to sensitivity in the second stage depend on the numbers of groups
testing positive in the first stage and are, as a consequence, in contrast to those for blood screening for which the errors in
testing for the two stages are assumed to be independent.

5. Conclusions

In this paper explicit formulae for the expected number of tests, the expected number of false negatives and the expected
number of false positives for the Dorfman, the and, the or and the A2 group screening schemes for blood samples in
the presence of a concentration effect are derived. The arguments used in the derivations are based on those presented
by Watson (1961) for group factor screening and Langfeldt et al. (1997) for the blood screening setting. Results for the case
of constant sensitivity and specificity in the test procedures and expressions for other operating characteristics, such as
pooling positive and negative predictive values, in the array-based schemes of interest follow immediately. In addition it
is clear from the illustrative examples that the optimal scheme for a particular operating characteristic depends sensitively
on that characteristic, on the prevalence and on the model adopted for the probability π ⋆

1 (s, k). In the context of group
factor screening, the result for the expected number of false negatives for the Dorfman scheme given in Watson (1961)
and Gurnow (1965) is extended to the and scheme and those for the or and the A2 schemes can then be derived with minor
modification.

There is scope for further research. Thus, in the context of case identification, it would be interesting to find k1 × k2
arrays for the four schemes, Dorfman, and, or and A2, which comprise the same number of cells and which are in some
sense optimal over all feasible integer values of k1 and k2. For example, arrays for which the expected number of tests is a
minimum or for which a nominated cost structure is effective could be identified. Some preliminary results in this regard
are available in Habtesllassie (2004). Related studies include that for the A2 algorithm with square arrays by Hudgens and
Kim (2011) and that for arrays with blockers by Langfeldt et al. (1997). It may also be worthwhile to consider relaxing the
assumption that the probability of infection is constant which is made in this study. Specifically, it would be interesting to
introduce heterogeneity in the prevalences into the derivations of Section 2.2, following the notions of informative testing
discussed in papers by, for example, Bilder et al. (2010) and McMahan et al. (2012). In the context of prevalence estimation,
it would seem, from a brief review of the literature, that array schemes such as the and, the or and the A2 have not been
used in the attendant group screening procedures. It would therefore be worthwhile to investigate whether or not the use
of such schemes would impact effectively on the estimation of prevalence, in particular by reducing themean squared error
of the prevalence estimate. Finally, it could well be informative to explore a little further the arguably tenuous link between
group screening of blood samples and group factor screening noted in the present study.
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Appendix. Derivations for the A2 algorithm

Relating to Section 2.2.4

The expected number of tests associated with the event R⋆
i ∩

k2
j=1 CN

j follows by first observing that the probability

P

R⋆
i ∩

k2
j=1 CN

j


can be expressed as the sum of the two terms

P


R⋆
i

k2
j=1

CN
j |

k2
j=1

A−

ij


P


k2
j=1

A−

ij


(A.1)

and

P


R⋆
i

k2
j=1

CN
j |at least one A+

ij


× P(at least one A+

ij ). (A.2)

The first term, term (A.1), is given by the product

P


R⋆
i |

k2
j=1

A−

ij


P


k2
j=1

CN
j |

k2
j=1

A−

ij


P


k2
j=1

A−

ij


= π ⋆

1 (0, k2)(π
N
C |−

q)k2

where P

R⋆
i | ∩

k2
j=1 A

−

ij


= π ⋆

1 (0, k2) and q = 1 − p. The second term, term (A.2), can be written as

P(R⋆
i |at least one A+

ij ) × P


k2
j=1

CN
j |at least one A+

ij


× P( at least one A+

ij ).

Observe now that P(R⋆
i |at least one A+

ij ) can be interpreted as the average sensitivity over rows of the stage one test
procedure and can be expressed as

S̄(e,R) = P(R⋆
i |at least one A+

ij ) =

k2
s=1

π ⋆
1 (s, k2)

k2
s


ps(1 − p)k2−s

(1 − qk2)
.

Also a little reflection shows that

P


k2
j=1

CN
j |at least one A+

ij


× P( at least one A+

ij ) = P


k2
j=1

CN
j ∩ at least one A+

ij



=


P


k2
j=1

CN
j


− P


k2
j=1

CN
j |

k2
j=1

A−

ij


P


k2
j=1

A−

ij


=

(πN

C )k2 − (πN
C |−

q)k2

.

Thus term (A.2) is given succinctly by S̄(e,R)

(πN

C )k2 − (πN
C |−

q)k2

. Overall therefore

P


R⋆
i

k2
j=1

CN
j


=

π ⋆
1 (0, k2) − S̄(e,R)


(πN

C |−
q)k2 + S̄(e,R)(π

N
C )k2 .

It now follows that the probability associated with the event ∩
k1
i=1 RN

i ∩ C⋆
j is given by

P


k1
i=1

RN
i ∩ C⋆

j


=

π ⋆
1 (0, k1) − S̄(e,C)


(πN

R|− q)k1 + S̄(e,C)(π
N
R )k1

where the term S̄(e,C) is equal to S̄(e,R) but with k2 replaced by k1. The expected number of tests for the A2(k1, k2) scheme is
thus given by

ET ,A2(k1, k2) = k1 + k2 + k1k2


P(R⋆

i ∩ C⋆
j ) + P


R⋆
i

k2
j=1

CN
j


+ P


k1
i=1

RN
i ∩ C⋆

j


= k1 + k2 + k1k2


π∗

R|+π∗

C |+
p + π∗

R|−π∗

C |−
(1 − p) +


π ⋆
1 (0, k2) − S̄(e,R)


(πN

C |−
q)k2 + S̄(e,R)(π

N
C )k2

+

π ⋆
1 (0, k1) − S̄(e,C)


(πN

R|− q)k1 + S̄(e,C)(π
N
R )k1


.
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The expected number of true positives associatedwith the event R⋆
i ∩

k2
j=1 CN

j is evaluated by observing that the conditional
probability P(R⋆

i ∩
k2
j=1 CN

j ∩ A⋆
ij|A

+

ij ) can be expressed as

P(R⋆
i |A

+

ij )P

 k2
j′=1
j′≠j

CN
j′

 P(CN
j |A+

ij )P(A⋆
ij|A

+

ij ) = π∗

R|+ (πN
C )k2−1 πN

C |+
π ⋆
2 (+).

It then follows immediately that

P


k1
i=1

RN
i ∩ C⋆

j ∩ A⋆
ij|A

+

ij


= π∗

C |+
(πN

R )k1−1 πN
R|+ π ⋆

2 (+).

Overall therefore the expected number of false negatives for the A2(k1, k2) scheme is given by

EFN,A2(k1, k2) = k1k2p


1 −


P(R⋆

i ∩ C⋆
j ∩ A⋆

ij|A
+

ij ) + P


R⋆
i

k2
j=1

CN
j ∩ A⋆

ij|A
+

ij


+ P


k1
i=1

RN
i ∩ C⋆

j ∩ A⋆
ij|A

+

ij


= k1k2 p


1 − [π∗

R|+ π∗

C |+
+ π∗

R|+(πN
C )k2−1πN

C |+
+ π∗

C |+
(πN

R )k1−1πN
R|+]π ⋆

2 (+)

.

Finally, the expected number of false positives associated with the event R⋆
i ∩

k2
j=1 CN

j can be found by considering the
probability P(R⋆

i ∩
k2
j=1 CN

j ∩A⋆
ij|A

−

ij ) = P(R⋆
i ∩

k2
j=1 CN

j |A−

ij )P(A⋆
ij|A

−

ij ). Specifically, the probability P(R⋆
i ∩

k2
j=1 CN

j |A−

ij ) can be found
by considering the probabilities associated with the events embedded in the two terms (A.1) and (A.2) conditional on A−

ij .
Thus

P

R⋆
i

k2
j=1

CN
j

k2
j′=1
j′≠j

A−

ij′ |A
−

ij

 = P


R⋆
i |

k2
j=1

A−

ij


P

 k2
j′=1
j′≠j

(CN
j′ ∩ A−

ij′)

 P(CN
j |A−

ij )

= π ⋆
1 (0, k2)(π

N
C |−

q)k2−1πN
C |−

.

Also, following the derivation of term (A.2), consider

P


R⋆
i

k2
j=1

CN
j ∩ (at least one A+

ij′ with j′ ≠ j|A−

ij )


.

Observe first that

P(R⋆
i |at least one A+

ij′ with j′ ≠ j ∩ A−

ij ) =

k2−1
s=1

π ⋆
1 (s, k2 − 1)

k2−1
s


ps(1 − p)k2−1−s

(1 − qk2−1)

and, for conciseness, denote this probability by S̄(e,R|−). Then

P


R⋆
i

k2
j=1

CN
j ∩ (at least one A+

ij′ with j′ ≠ j)|A−

ij


= S̄(e,R|−)


(πN

C )k2−1
− (πN

C |−
q)k2−1πN

C |−
.

Thus

P


R⋆
i

k2
j=1

CN
j |A−

ij


= (π ⋆

1 (0, k2) − S̄(e,R|−))(π
N
C |−

q)k2−1πN
C |−

+ S̄(e,R|−)(π
N
C )k2−1πN

C |−

and, similarly,

P


k1
i=1

RN
i ∩ C⋆

j |A
−

ij


= (π ⋆

1 (0, k1) − S̄(e,C |−))(π
N
R|− q)k1−1πN

R|− + S̄(e,C |−)(π
N
R )k1−1πN

R|−



16 Y.G. Habtesllassie et al. / Journal of Statistical Planning and Inference ( ) –

where S̄(e,C |−) is given by the expression for S̄(e,R|−) but with R replaced by C and k2 by k1. Overall therefore the expected
number of false positives is given by

EFP,A2(k1, k2) = k1k2


P(R⋆

i ∩ C⋆
j |A

−

ij ) + P


R⋆
i

k2
j=1

CN
j |A−

ij


+P


k1
i=1

RN
i ∩ C⋆

j |A
−

ij


× P(A∗

ij|A
−

ij ) P(A−

ij )

= k1k2 (1 − p)


P(R⋆

i ∩ C⋆
j |A

−

ij ) + P


R⋆
i

k2
j=1

CN
j |A−

ij


+ P


k1
i=1

RN
i ∩ C⋆

j |A
−

ij


π ⋆
2 (−)

= k1k2(1 − p)

π∗

R|−π∗

C |−
+ (π ⋆

1 (0, k2) − S̄(e,R|−))(π
N
C |−

q)k2−1πN
C |−

+ S̄(e,R|−)(π
N
C )k2−1πN

C |−

+ (π ⋆
1 (0, k1) − S̄(e,C |−))(π

N
R|− q)k1−1πN

R|− + S̄(e,C |−)(π
N
R )k1−1πN

R|−


π ⋆
2 (−).

Relating to Section 2.2.5

Observe that for sensitivities and specificities which do not depend on the number of infected cells in a group

P


R⋆
i

k2
j=1

CN
j


= (1 − Sp − Se)(1 − p)k2 [1 − t(k1 − 1)]k2 + Se [1 − t(k1 − 1)]k2 ,

that

P


R⋆
i

k2
j=1

CN
j ∩ A⋆

ij|A
+

ij


= S2e (1 − Se) [1 − t(k1)]k2−1

and that

P


R⋆
i

k2
j=1

CN
j ∩ A⋆

ij|A
−

ij


= (1 − Sp)


(1 − Sp − Se) (1 − p)k2−1

[1 − t(k1 − 1)]k2 + Se[1 − t(k1)]k2−1
[1 − t(k1 − 1)]


for i = 1, . . . , k1. Probabilities associated with the events ∩

k1
j=1 R

N
i ∩ C⋆

j , j = 1, . . . , k2, follow immediately by interchanging
k1 and k2 in the above expressions. Note that the sums embedded in the terms h(n) and h(n|y) given in the paper by Kim
et al. (2007) can be evaluated explicitly and thus that the results presented here are in accord with the expressions for
P(R⋆

i ∩
n
j=1 CN

j ), the pooling sensitivity and the pooling specificity developed for the A2(n, n) scheme in that paper. The
expected number of tests, the expected number of false negatives and the expected number of false positives for the
A2(k1, k2) scheme now follow immediately from the general formulae given in Section 2.2.4 and are given by

ET ,A2(k1, k2) = k1 + k2 + k1k2

S2e p + t(k1 − 1)t(k2 − 1) (1 − p)

+ (1 − Se − Sp)

[(1 − t(k1 − 1)) q]k2 + [(1 − t(k2 − 1)) q]k1


+ Se


[(1 − t(k1 − 1))]k2 + Se[(1 − t(k2 − 1))]k1


,

EFN,A2(k1, k2) = k1k2 p

1 − S3e − S2e (1 − Se)


(1 − t(k1))k2−1

+ (1 − t(k2))k1−1
and

EFP,A2(k1, k2) = k1k2(1 − p)(1 − Sp) {t(k1 − 1)t(k2 − 1)

+ (1 − Se − Sp)

[1 − t(k1 − 1)]k2 qk2−1

+ [1 − t(k2 − 1)]k1 qk1−1
+ Se


[1 − t(k1)]k2 + [1 − t(k2)]k1


respectively.
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